Skip to main content

“Hole Burning Spectroscopy of Organic Glasses”

Application for the investigation of low temperature glass dynamics

  • Conference paper
  • 294 Accesses

Part of the book series: NATO Science Series ((ASHT,volume 79))

Abstract

The recent results of low temperature organic glass relaxation on broad temperature and time scales, investigated via optical hole burning spectroscopy, are reviewed. A short introduction to the persistent hole burning effect and the burning mechanisms is given. The manifestation of glass relaxation in optical spectra in form of spectral diffusion (SD) is interpreted in terms of the two level system (TLS) model. The main characteristics of equilibrium SD in organic glasses are investigated and quantitatively described by the TLS model. Nonequilibrium effects, caused by various reasons such as sample aging or external perturbations are discussed. The last section presents the new observations of SD on PMMA samples at relatively high temperature, which can not be explained in a framework of TLS model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Personov R.I., AI’shits E.I., Bykovskaja L.A. (1972) The effect of fine structure appearance in laser-excited fluorescence spectra of organic compounds in solid solutions, Optics Comm.6, 169.

    Article  ADS  Google Scholar 

  2. Personov R.I., Kharlamov B.M. (1973) Extreme narrowing of bands in the fluorescence excitation spectra of organic molecules in solid solutions, Optics Comm. 7, 417.

    Article  ADS  Google Scholar 

  3. Personov R.I., AI’shits E.I., Bykovskaja L.A., Kharlamov B.M. (1973) Fine structure of luminescence spectra of organic molecules at laser excitation and the nature of broad-band spectra, JETF 65, 1825.

    Google Scholar 

  4. Kharlamov B.M., Personov R.I., Bykovskaja L.A. (1974) Stable “gap” in absorption spectra of solid solutions of organic molecules by laser irradiation, Optics Comm., 12, 191.

    Article  ADS  Google Scholar 

  5. Gorokhovskii A.A., Kaarli R.K., Rebane L.A. (1974) Hole burning in the contour of purely electronic line in the Shpol’skii system, Pismo JETF 20, 474.

    Google Scholar 

  6. Personov R.I. (1983) Site selection spectroscopy of complex molecules in solution and its applications, in Agranovich V.M. and Maraduduin A.A. (eds.), Modern problems in condensed matter sciences, North-Holland, Amsterdam, N.Y., Oxford.

    Google Scholar 

  7. Rebane L.A., Gorokhovskii AA., Kikas J.V. (1982) Low-Temperature Spectroscopy of Organic Molecules in Solids by Photochemical Hole Burning, Appl.Phys.B., 29, 235–250.

    Article  ADS  Google Scholar 

  8. Small G.J. (1983) Persistent nonphotochemical holeburning and the dephasing of impurity electronic transitions in organic glasses, in: Agranovich V.M. and Maraduduin A.A. (eds.), Modern problems in condensed matter sciences, North-Holland, Amsterdam.

    Google Scholar 

  9. Friedrich J., Haarer D. (1984) Photochemical Hole Burning: A Spectroscopic Study of Relaxation Processes in Polymers and Glasses, Angew.Chem.Int.Ed.Engl., 23, 113–140.

    Article  Google Scholar 

  10. Personov R.I., Kharlamov B.M. (1986) Photochemical and photophysical hole burning in electronic spectra of complex organic molecules, Laser Chemistry, 6, 181.

    Article  Google Scholar 

  11. Moerner W.E. ed. (1988) Persistent spectral hole burning: science and applications, (Topics in current physics, v.44) Springer, Berlin.

    Book  Google Scholar 

  12. Maier M. (1986) Persistent spectral holes in external fields, Appl.Phys.B.41, 73.

    Google Scholar 

  13. Kohler B.E., Personov R.I., Woehl J.C. (1995) Electric field effects in molecular systems studied via persistent hole burning, in: Myers A.B. and Rizzo T.R. (eds.), Laser Techniques in Chemistry (Techniques of Chemistry Series, Vol.XXIII), John Willey & Sons,Inc., Ch.8.

    Google Scholar 

  14. Van den Berg R., Van der Laan V., V“lker S. (1987) Zeeman effects in amorphous solids: A hole-burning study of free-base porphin in polyethylene, Chem.Phys.Lett., 142, 535 (and references therein).

    Article  ADS  Google Scholar 

  15. Ulitsky N.I., Kharlamov B.M., Personov R.I. (1990) Effect of high magnetic field on the degenerate S-S transitions of organic molecules in amorphous matrices via hole burning: Zn-phthalocyanine in polyvinylbutural, Chem.Phys., 141, 441–445 (and references threin).

    Google Scholar 

  16. Krausz E.R., Riesen H., Schatz P., Gasyna Z., Duford C.L., Williamson B.E. (1996) Magneto-optical hole burning studies of matrix isolated phthalocyanines, J.Luminescence 66&67, 19–24.

    Google Scholar 

  17. Laisaar A., Kikas J.V. (1997) Persistent spectral hole-burning in doped organic crystasls and polymers at high hydrostatic pressures, JLuminescence 72–74, 515–516.

    Article  ADS  Google Scholar 

  18. Macfarlane R.M., Shelby R.M. (1987) Homogeneous line broadening of optical transitions of ions and molecules in glasses, JLuminescence 36, 179–207.

    Article  ADS  Google Scholar 

  19. Völker S., (1989) Hole-burning spectroscopy, Ann.Rev.Phys.Chem., 40, 499–530.

    Article  ADS  Google Scholar 

  20. Osad’ko I.S. (1991) Optical dephasing and homogeneous optical bands in crystals and amorphous solids:dynamic and stochastic approaches, Phys.Rep. 206, 45–97.

    Google Scholar 

  21. Jankowiak R., Hayes J.M., Small G.J. (1993) Spectral Hole-Burning Spectroscopy in Amorphous Molecular Solids and Proteins, Chem.Rev. 93, 1471.

    Article  Google Scholar 

  22. Hunklinger S., Raychandhuri A.K. (1986) Termal and elastic anomalies in glasses at low temperatures, in: Brewer D.F. (ed.), Progressin Low Temperature Physics, Vol.9, Elsevier Science Publishers B.V., Ch.3.

    Google Scholar 

  23. Phillips W.A. (1987) Two-level states in glasses, Rep.Prog.Phys. 50, 1657.

    Article  ADS  Google Scholar 

  24. Esquinazi P., (ed.), (1998) Tunneling systems in amorphous and crystalline solids, Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokio-Hong Kong-Barcelona-Budapest).

    Google Scholar 

  25. Friedrich J., Haarer D. (1986) Structural relaxation processes in polymers and glasses as studied by high resolution optical spectroscopy, in: Zschokke-Granacher I. (ed.), Optical spectroscopy of glasses, Reidel, Dordrecht., pp.149–198.

    Chapter  Google Scholar 

  26. Maier H., Kharlamov B.M., Haarer D. (1998) Investigation of tunneling dynamics by optical hole-burning spectroscopy in: Esquinazi P. (ed), Tunneling systems in amorphous and crystalline solids, Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokio-Hong Kong-Barcelona-Budapest, Ch.6.

    Google Scholar 

  27. Meijers H.C., Wiersma D.A. (1994) Low temperature dynamics in amorphous solids: A photon echo study, J.Chem.Phys. 101, 6927–6943.

    Article  ADS  Google Scholar 

  28. Thorn Leeson D., Berg O., Wiersma D.A. (1994) Low-tempeature protein dynamics studied by the long-lived stimulated photon echo, J.Phys.Chem., 98, 3913–3916.

    Article  Google Scholar 

  29. Narasimhan L.R., Littau K.A., Pack D.W., Elschner A., Bai Y.S., Fayer M.D. (1990) Probing organic glasses at low temperature with variable time scale optical dephasing measurements, Chem.Rev. 90, 439–457.

    Article  Google Scholar 

  30. Orrit M., Bernard J., Personov R.I. (1993) High-resolution spectroscopy of organic molecules in solids: from fluorescence line narrowing and hole burning to single molecule spectroscopy, J.Phys.Chem. 97, 10256–10268.

    Article  Google Scholar 

  31. Skinner J.L., Moerner W.E. (1996) Structure and Dynamics in Solids As Probed by Optical Spectroscopy, J.Phys.Chem. 100, p.13251–13262.

    Article  Google Scholar 

  32. Köhler W., Breinl W., Friedrich J. (1985) Laser photochemistry with polarised light in low-temperature glasses, J.Phys.Chem. 89, 2473–2477.

    Article  Google Scholar 

  33. Kador L., Schulte G., Haarer D. (1986) Relation between hole-burning parameters and molecular parameters: free-base phtalocyanine in polymer hosts, J.Phys.Chem. 90, 1264–1270.

    Article  Google Scholar 

  34. Müller J., Khodykin O.V., Haarer D., Kharlamov B.M. (1999) Nonphotochemical hole burning in ZnTBP/PMMA. Unusual burning kinetics and very narrow holewidth limit, Chem.Phys. 243, 201–208

    Article  Google Scholar 

  35. Köhler W., Friedrich J. (1987) Distribution of barrier heights in amorphous organic materials, Phys.Rev.Lett. 59, 2199.

    Article  ADS  Google Scholar 

  36. Köhler W., Friedrich J. (1988) Probing of extremely low configurational barriers in an organic glass, J.Chem.Phys. 88, 6655.

    Article  ADS  Google Scholar 

  37. Köhler W., Meiler J., Friedrich J. (1987) Tunneling dynamics of doped organic low-temperature glasses as probed by a photophysical hole-burning system, Phys.Rev.B, 35, 4031.

    Article  ADS  Google Scholar 

  38. Hayes J.M., Small G.J. (1978) Non-photochemical hole burning and impurity site relaxation processes in organic glasses, Chem.Phys. 27, 151.

    Article  ADS  Google Scholar 

  39. Shu L., Small G.J. (1990) On the mechanism of nonphotochemical hole burning of optical transitions in amorphous solids, Chem.Phys. 141, 447–455.

    Article  ADS  Google Scholar 

  40. Shu L., Small G.J. (1992) Mechanism of nonphotochemical holeburning: Cresyl violet in polyvinyl alcohol films, JOSA B 9, 724–732.

    Article  ADS  Google Scholar 

  41. Zeller R.C., Pohl R.O. (1971) Thermal conductivity and specific heat of noncrystalline solids, Phys.Rev.B 4, 2029.

    Article  ADS  Google Scholar 

  42. Anderson P.W., Halperin B.I., Varma C.M. (1972) Anomalous low-temperature thermal properties of glasses and spin glasses,. Phil.Mag. 25, 1–9.

    Article  ADS  MATH  Google Scholar 

  43. Phillips W.A. (1972) Tunneling states in amorphous solids, JLow Temp.Phys. 7, 351–360.

    Article  ADS  Google Scholar 

  44. Klauder J.R., Anderson P.W. (1962) Spectral diffusion decay in spin resonance experiments, Phys.Rev. 125, 912.

    Article  ADS  Google Scholar 

  45. Black J.L., Halperin B.I. (1977) Spectral diffusion, phonon echoes, and saturation recovery in glasses at low temperatures, Phys.Rev.B 16, 2879.

    Article  ADS  Google Scholar 

  46. Reinecke T.L. (1979) Fluorescence linewidth in glasses, SoL.St.Comm. 32, 1103–1106.

    Article  ADS  Google Scholar 

  47. Breinl W., Friedrich J., Haarer D. (1984) Spectral diffusion of a photochemical proton transfer system in an amorphous organic host: Quinisarin in alkohol glass, J.Chem.Phys. 81, 3915.

    Article  ADS  Google Scholar 

  48. Maier H., Kharlamov B.M., Haarer D. (1996) Two-level system dynamics in the long-time limit: a power-law time dependence, Phys.Rev.Lett. 76, 2085.

    Article  ADS  Google Scholar 

  49. Hannig G., Maier H., Haarer D., Kharlamov B.M. (1996) Interacting tunneling States: A hole-burning study of spectral diffusion, Mot Cryst.Liq.Cryst. 291, I 1–16.

    Google Scholar 

  50. Burin A.L., Kagan Yu. (1994) Low energy collective excitations in glasses. New relaxation mechanism for ultralow temperatures, JETF 106, 633–647.

    Google Scholar 

  51. Neu P., Reichman D.R., Silbey R.J. (1997) Spectral diffusion on ultralong time scales in low-temperature glasses, Phys.Rev.B 56, 5250.

    Article  ADS  Google Scholar 

  52. Heuer A., Neu P. (1997) Tunneling dynamics of side chains and defects in proteins, polymer glasses, and OH-doped network glasses, J.Chem.Phys. 107, 8686.

    Article  ADS  Google Scholar 

  53. Müller J., llaarer. D, Khodykin O.V., Kharlamov,B.M. (1999) Long-time scale spectral diffusion in PMMA: Beyond the TLS model?, Physics Letters A 255, 331–335

    Google Scholar 

  54. Fritsch K., Eicker A., Friedrich J., Kharlamov B.M, Vanderkooi J.M. (1998) Spectral diffusion in proteins, Europh.Lett. 41, 339–344.

    Article  ADS  Google Scholar 

  55. Bai Y.S., Littau K.A., Fayer M.D. (1989) The nature of glass dynamics: thermal reversibility of spectral diffusion in a low temperature glass, Chem.Phys.Lett. 162, 449–454.

    Article  ADS  Google Scholar 

  56. Littau K.A., Bai Y.S., Fayer M.D. (1990) Two-lewel systems and low-temperature glass dynamics: Spectral diffusion and thermal reversebility of hole-burning linewidths, J.Chem.Phys. 92, 4145.

    Article  ADS  Google Scholar 

  57. Kharlamov B.M., Haarer D., Jahn S. (1994) Spectral diffusion in organic glasses. Studies in a millisecond range, Optics and Spectroscopy 76, 302–313

    ADS  Google Scholar 

  58. Fritsch K., Friedrich J., Kharlamov B.M. (1996) Non-equilibrium phenomena in spectral diffusion physics of organic glasses, J.Chem.Phys. 105, 1798–1806.

    Article  ADS  Google Scholar 

  59. Jahn S., Müller K.-P., Haarer D. (1992) Two-level-system dynamics in doped polymers glasses below 1 K: hole burning as an optical analog to heat-release experiments, JOSA B 9, 925–930.

    Article  ADS  Google Scholar 

  60. Maier H., Haarer D. (1995) Equilibrium and nonequilibrium tunneling dynamics and spectral diffusion in the millikelvin regime, J.Luminescence 64, 87–93.

    Article  ADS  Google Scholar 

  61. Fritsch K., Friedrich J., Kharlamov B.M., unpublished results.

    Google Scholar 

  62. Maier H., Hannig G., Müller J., Haarer D, Khodykin OV., Kharlamov B.M (1999), J.Chem.Phys., to be published

    Google Scholar 

  63. Schulte G., Grond W., Haarer D., Silbey R.J. (1988) Photochemical hole burning of phtalocyanine in polymer glasses: Thermal cycling and spectral diffusion, J.Chem.Phys. 88, 679–685.

    Article  ADS  Google Scholar 

  64. Köhler W., Friedrich J. (1988) Irreversible features of thermal line broadening in glasses as probed by persistent optical holes, Europh.Lett. 7, 517.

    Article  ADS  Google Scholar 

  65. Köhler W., Zollfrank J., Friedrich J. (1989) Thermal irrevesibility in optically labelled low-temperature glasses, Phys.Rev.B 39, 5414.

    Article  ADS  Google Scholar 

  66. Al’shits E.I., Ulitsky N.1., Kharlamov B.M. (1991) Investigation of light-and thermo-induced spectral diffusion in impurity amorphous systems via Stark hole burning spectroscopy, Isv.AN ESSR, phys.-mat. 40, 161–171.

    Google Scholar 

  67. Schellenberg P., Friedrich J. (1994) Optical spectroscopy and disorder phenomena in polymers, proteins and glasses, in: Richert R. And Blumen A. (eds.), Disorder effects on relaxation processes, Springer-Verlag, Berlin, Heidelberg, pp.407–424.

    Chapter  Google Scholar 

  68. Khodykin O.V., Ulitsky N.1., Kharlamov B.M. (1996) Thermal irreversibility in low temperature polymers: investigation of spectral diffusion, Opt.Spektr. 80, 489–496.

    Google Scholar 

  69. Kharlamov B.M., Wunderlich R., Maier H., Haarer D. (1998) Optical investigation of electric-fieldinduced relaxations in amorphous solids at low temperatures, J.Luminescence, 76&77, 283–287.

    Article  Google Scholar 

  70. Wunderlich R., Maier H., Haarer D., Kharlamov B.M. (1998) Optical investigation of low-temperature electric-field-induced relaxations in amorphous solids, J.Phys.Chem.B 102, 10150–10157.

    Article  Google Scholar 

  71. Maier H., Wunderlich R., Haarer D., Kharlamov B.M., Kulikov S.G. (1995) Optical Detection of Electric Two Lewel System Dipoles in a Polymeric Glass, Phys.Rev.Lett. 74, 5252–5255.

    Article  ADS  Google Scholar 

  72. Wunderlich R., Haarer D., Kharlamov B.M. (1999) Optical investigation of electric field induced spectral diffusion in polymers on a time scale 10- l05 s, to be published.

    Google Scholar 

  73. Federle G., Hunklinger S. (1982) Ultrasonic attenuation in polymethylmethacrylate at low temperatures, in: Nonmetalic materials and composites at low temperatures, v.2, Plenum press, NY&London.

    Google Scholar 

  74. Nittke A., Scherl M., Esquinazi P., Lorenz W., Li Junyun, Pobell F. (1995) Low temperature heat release, sound velosity and attenuation, specific heat and thermal conductivity in polymers, J.Low Temp.Phys. 98, 517–547.

    Article  ADS  Google Scholar 

  75. Wunderlich R., Maier H., Haarer D., Kharlamov B.M. (1998) Light-induced spectral diffusion in heavily doped polymers, Phys.Rev.B 57, R5567

    Article  ADS  Google Scholar 

  76. Den Hartog F.T.H., Bakker M.P., Silbey R.J., Völker S. (1998) Long-time spectral diffusion induced by short-time energy transfer in doped glasses: concentration-, wavelength-and temperature dependennce of spectral holes, Chem.Phys.Lett. 297, 314–320.

    Article  Google Scholar 

  77. Den Hartog F.T.H., van Papendrecht C., Silbey R.J., Völker S (1999) Spectral diffusion induced by energy transfer in doped organic glasses: delay-time dependence of spectral holes, JChem.Phys. 110, 1010.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kharlamov, B.M. (2000). “Hole Burning Spectroscopy of Organic Glasses”. In: Kajzar, F., Agranovich, M.V. (eds) Multiphoton and Light Driven Multielectron Processes in Organics: New Phenomena, Materials and Applications. NATO Science Series, vol 79. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4056-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4056-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6272-2

  • Online ISBN: 978-94-011-4056-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics