Skip to main content

Nanostructured Coatings of Inner Surfaces in Microporous Matrixes

  • Chapter
Nanostructured Films and Coatings

Part of the book series: NATO Science Series ((ASHT,volume 78))

Abstract

There is growing interest in the physical properties of extremely small structures. The experimental realisation of new effects relies on the ability to create new types of structures and devices. Our understanding of material processing in the pursuit of ultra-small structures is continually advancing. Sophisticated epitaxial growth and lateral microstructuring techniques have made it possible to realise low-dimensional electronic systems with quantum confined energy structure i.e. quantum wells, quantum wires and quantum dots. Low-dimensional systems can also be obtained by confining a solid or liquid within the nanometer-sized pores of different porous materials (see[1]). Systems with size-selected nanoparticles embedded in a porous matrix via chemical coating have received some attention these past few years. In this case the confined materials penetrate into the pores due to wetting processes. In the case of non-wetting there is the possibility of using a mechanical coating of inner surfaces of porous materials when some external pressure forces non-wetting liquid into the pores[2]. Mechanical coating means that the mechanical energy of the piston forcing the liquids into the pores transforms to the energy of some new surface arising due to filling process (Fig 1). Since the total surface energy is proportional to the highly developed inner surface of the porous matrix, to surface tension of embedded materials and inversely proportional to the characteristic diameters of pores, for very small diameters a relative amount of surface energy may be very large and even comparable with some traditional sources of energy (Fig 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schwarz J.A. and Contescu C.I.(eds) (1999)Surfaces of Nanoparticles and Porous MaterialsMarcel Dekker Inc.,New-York

    Book  Google Scholar 

  2. Bogomolov V.N.(1978) Liquids within ultrathin channels Uspehi fizicheskih nauk 124, 171–182

    CAS  Google Scholar 

  3. Bogomolov V.N.(1993) Surface energy and prospects for it use in power generation, transport and ecology Soy. Technical Physics 38, 224–227

    Google Scholar 

  4. Levitz P., Ehret G., Sinha S.K., Drake J.M.(1991) Porous vycor glass: the microstructure as probed by electron microscopy, direct energy transfer, small-angle scattering, and molecular adsorption J.Chem.Phys. 95, 6151–6161

    Article  CAS  Google Scholar 

  5. Mu R. and Malhorta V.M.(199I) Effects of surface and physical confinement of the phase transitions of cyclohexane in porous silica Phys.Rev. 44B, 4296–4303

    Article  CAS  Google Scholar 

  6. Strange J.H., Raham M., Smith E.G.(1993) Characterisation of porous solids by NMR Phys.Rev.Lett. 71, 3589–3591

    Article  CAS  Google Scholar 

  7. Borisov B.F., Charnaya E.V., HoffinannW-D., Michel D., Shelyapin A.V. and Kumzerov Yu.A.(1997) NMR and acoustic investigations of the melting-freezing phase transition of gallium in a porous glass J.Phys.Condens.Matter 9, 3377–3386

    CAS  Google Scholar 

  8. Borisov B.F., Charnaya E.V., Kumzerov Yu.A., Radzhabov A.K., Shelyapin A.V.(1994) Phase transitions for gallium microparticles in a porous glass, Sol.St.Commun. 92, 531–533

    Article  Google Scholar 

  9. Shabanova E., Charnaya E.V., Schaumburg K. and Kumzerov Yu.A.(1997) NMR studies of gallium embedded into a porous glass Physica B229, 268–274

    Google Scholar 

  10. Kumzerov Yu.A., Nabereznov A.A., Vakhrushev S.B. and Savenko B.N.(1995) Freezing and melting of mercury in porous glass Phys.Rev. B52, 4772–4774

    Google Scholar 

  11. Chamaya E.V., Tien C., Lin K.J., Kumzerov Yu.A.(1998) X-ray studies of the melting and freezing phase transitions for gallium in a porous glass Phys.Rev. 58B, 11089–11092

    Google Scholar 

  12. Beamish J.R., Mulders N., Hikata A. and Elbaum C.(1991) Vacancy diffusion and stress relaxation in4He freezing in porous Vycor Phys.Rev. B44, 9314–9318

    Google Scholar 

  13. Molz E., Wong A.P.Y., Chan M.H.W.and Beamish J.R.(1993) Freezing and melting of fluids in porous glasses Phys.Rev. B48, 5741–5750

    Google Scholar 

  14. Warnock J., Awschalom D.D.and Shafer M.W.(1986) Geometrical supercooling of liquids in porous glass Phys.Rev.Lett. 57, 1753–1756

    Article  CAS  Google Scholar 

  15. Schindler M., Destinger A., Kondo Y. and Pobell F.(1996) Hydrogen in porous Vycor glass. Phys.Rev. B53, 11451–11461

    Google Scholar 

  16. Colla E.V., Koroleva E.Yu., Kumzerov Yu.A., Savenko B.N., Vakhrushev S.B.(1996) Ferroelectric phase transitions in materials embedded in porous media Ferroelectric Letters 20, 143–147

    Article  CAS  Google Scholar 

  17. Colla E.V., Fokin A.V., Kumzerov Yu.A.(1997) Ferroelectric properties of nanosize KDP particles SoLSt.Commun. 103, 127–130

    CAS  Google Scholar 

  18. Chamaya E.V., Tien C., Lin K.J., Kumzerov Yu.A.(1998) Superconductivity of gallium in various confined geometries Phys.Rev. B58, 467–472

    Google Scholar 

  19. Balakirev V.G., Bogomolov V.N., Zhuravlev V.V., Kumzerov Yu.A., Petranovskii V.P., Romanov S.G., Samoilovich L.A. (1993) Three-dimensional superlattices within the matrixes of opal Kristallographia 38, 111–120

    CAS  Google Scholar 

  20. Bogomolov V.N., Gaponenko S.V., Germanenko I.N., Kapitonov A.M., Petrov E.P., Gaponenko N.V., Prokofiev A.V., Ponyavina A.N., Silvanovich N.I., Samoilovich S.M. (1997) Photonic baud gap phenomenon and optical properties of artificial opals Phys.Rev. 55E, 7619–7625

    Google Scholar 

  21. Bogomolov V., Zhuravlev V., Zhadorozhnii A., Kolla E., Kumzerov Yu. (1982) Voltage-current characteristics of regular system of weakly coupled superconducting particles JETP Lett. 36, 365–367

    Google Scholar 

  22. Bogomolov V.N., Kazantseva L.K., Kolla E.V., Kumzerov Yu.A.(1987) Periodic peaks of a resistive state during destruction of the superconductivity by a current in a lattice of weakly coupled indium particles Sov.Phys.Solid State 29, 359

    Google Scholar 

  23. Bogomolov V.N., Kumzerov Yu.A., Romanov S.G., Zhuravlev V.V. (1993) Josephson properties of the three-dimensional regular lattice of the weakly coupled nanoparticles Physica C208, 371384

    Google Scholar 

  24. Kumzerov Y., Bogomolov V., Colla E., Romanov S. (1994) Three-dimensional regular Josephson medium from identical nanoparticles Phys.Low-Dim.Struct. 11/12, 129–134

    Google Scholar 

  25. Babmuratov K.Kh., Zhuravlev V.V., Kumzerov Yu.A., Romanov S.G., Khachaturov S.A. (1993) Structure of a resistive superconducting transition in a regular lattice of indium nanoparticles Sov.Phys.Solid State 35, 795–797

    Google Scholar 

  26. Breck D.W. (1974) Zeolite molecular sievesA Willey-Interscience Publication john Willey&Sons, New-York

    Google Scholar 

  27. Bogomolov V.N.(1972) Nonwetting liquids in ultrathin channels Sov.Phys.Solid State 14, 1048–1050

    Google Scholar 

  28. Bogomolov V.N., Zhadorozhnii A.I.(1975) Monoatomic chains of Hg and Bi in mordenite and surface tension of liquid metals Sov.Phys.Solid State 17, 1078–1079

    Google Scholar 

  29. Bogomolov V.N., Volkonskaya T.I., Zadorozhnii A.I., Kapanadze A.A., Lutsenko E.L. (1975) Phase transition in a system of Ga and Hg drops in zeolite cavities of 12A diameter Sov.Phys. Solid State 17, 1110–1112

    Google Scholar 

  30. Bogomolov V.N., Lutsenko E.L., Petranovskii V.P., Kholodkevich S.V.(1976) Absorption spectra of three-dimensionally-ordered system of 12A particles JETP Lett. 23, 482–484

    Google Scholar 

  31. Bogomolov V.N., Vaitekunas F.K., Zadorozhniy A.I., Pavlova T.M., Sutkus K.V. and Yashin G.Yu. (1983) Determination of the time taken to establish a current flow regime in the region of N-type peaks of the current-voltage characteristic of an NaX-Se crystal Sov.Phys. Solid State 25, 1983–1984

    Google Scholar 

  32. Pundsak F.L. (1961) The pore structure of chrysotile asbestos J.Phys.Chem. 65, 30–33

    Article  Google Scholar 

  33. Yada K. (1967) Study of chrysotile asbestos by a high resolution electron microscope Acta Cryst. 23, 704–707

    Article  CAS  Google Scholar 

  34. Bogomolov V.N., Krivosheev V.K., Kumzerov Yu.A. (1972) Superconductivity of mercury in chrysotile asbestoses Sov.Phys. Solid State 133148–3150

    Google Scholar 

  35. Bogomolov V.N., Kumzerov Yu.A. (1975) Fluctuations in mercury filaments five atoms in diameter JETP Lett. 21, 198–200

    Google Scholar 

  36. Bogomolov V.N., Klushin N.A., Kumzerov Yu.A. (1977) Superconducting transition of indium filaments at 6K JETP Lett. 26, 72–74

    Google Scholar 

  37. Bogomolov V., Kumzerov Y., Pimenov V. (1981) Splitting of the heat capacity peak of metal filaments in a dielectric matrix in the superconducting region with decreasing diameter of the filaments Physics Letters 86A, 183–184

    CAS  Google Scholar 

  38. Bogomolov V.N., Kvyatkovskii B.E., Kolla E.V., Ktitorov S.A., Kumzerov Yu.A. and Okuneva N.M. (1981) N-type current-voltage characteristic of ultrathin metal filaments in the superconducting state Sov.Phys. Solid State 23, 1271–1272

    Google Scholar 

  39. Bogomolov V.N., Kolla E.V., Kumzerov Yu.A., Okuneva N.M., Prigodin V.N. (1980) Appearance of the dielectric instability and its coexistence with the superconductivity in ultrathin metallic filaments with decreasing diameter Sol.St.Commun. 35, 363–366

    Article  CAS  Google Scholar 

  40. Bogomolov V.N., Kolla E.V., Kumzerov Yu.A. (1983) Determination of the critical temperature of the ultrathin metals filaments superconducting transition and its dependence on the filament diameter Sol.St.Commun. 46, 159–160

    Article  CAS  Google Scholar 

  41. Langer J.S.,Ambegaokar V. (1967) Intrinsic resistive transition in narrow superconducting channels Phys. Rev. 164, 498–510

    Article  Google Scholar 

  42. McCumber D.E., Halperin B.L. (1970) Time scale of intrinsic resistive fluctuations in thin superconducting wires Phys.Rev. B1, 1054–1070

    Google Scholar 

  43. Larkin A.I., Ovchinnikov Yu.N. (1973) Fluctuation conductivity in the vicinity of the superconducting transition J.Low Temp.Phys. 10, 407–421

    Article  CAS  Google Scholar 

  44. Bogomolov V.N., Kolla E.V., Kumzerov Yu.A. (1983) One-dimensional effects in low-temperature conductivity of ultrathin metallic filaments So/.St.Commun. 46, 383–384

    Article  CAS  Google Scholar 

  45. Bogomolov V.N., Kolla E.V., Kumzerov Yu.A. (1985) First-order phase transition in an approximately one-dimensional system JETP Lett. 41, 34–37

    Google Scholar 

  46. Thouless D.J. (1980) The effect of inelastic electron scattering on the conductivity of very thin wires Sol.St.Commun. 34, 683–685

    Article  CAS  Google Scholar 

  47. Kumzerov Y., Poborchii V. (1994) Ultrathin wires with near atomic diameters Phantoms Newsletter 4, 2–3

    Google Scholar 

  48. Ivanova M.S., Kumzerov Y.A., Poborchii V.V., Ulashkecich Y.V., Zhuravlev V.V. (1995) Ultrathin wires incorporated within chrysotile asbestos nanotubes: optical and electrical properties Microporous Materials 4, 319–322

    Article  CAS  Google Scholar 

  49. Romanov S.G., Butko V.Yu., Kumzerov Yu.A., Yates N.M., Pemble M.I., Agger J.R., Anderson M.W., Sotomayor-Torres C.M. (1997) Interface phenomena and optical properties of structurally confined InP quantum wires ensembles Phys.Solid State 39, 641–648

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kumzerov, Y.A. (2000). Nanostructured Coatings of Inner Surfaces in Microporous Matrixes. In: Chow, GM., Ovid’ko, I.A., Tsakalakos, T. (eds) Nanostructured Films and Coatings. NATO Science Series, vol 78. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4052-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4052-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6266-1

  • Online ISBN: 978-94-011-4052-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics