Skip to main content

Synthesis and Characterization of Nanocomposite Coatings

  • Chapter
Nanostructured Films and Coatings

Part of the book series: NATO Science Series ((ASHT,volume 78))

Abstract

The synthesis of nanocomposite coatings is described in this paper. The nanocomposite feedstock powders are synthesized using mechanical milling, and the characteristics of the milled powders, i.e., morphology, agglomeration behavior, powder size, grain size and structural evolution during milling, are analyzed using X-ray diffraction, SEM and TEM. Using high velocity oxygen fuel (HVOF) spraying, the nanocomposite coatings are sprayed, and the microstructures and properties of the resulting coatings are characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Pawlowski, L (1995) The Science and Engineering of Thermal Spray Coatings, John Wiley & Sons. England.

    Google Scholar 

  2. Roseberry, T. J. and Boulger, F. W. A plasma flame spray handbook, U. S. Department of Commerce Report No. MT-043, National Technical Information Service, Springfield, VA.

    Google Scholar 

  3. Lavemia, E. J., Lau, M. L. and Jiang, H. G. (1998) Thermal spray processing of nanocrystalline materials, in G. M. Chow and N. I. Noskova (eds.), Nanostructured Materials, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 283–302.

    Google Scholar 

  4. Eidelman, S. and Yang, X. (1997) NanoStructured Materials, 79, 9.

    Google Scholar 

  5. Sobolev, V.V. and Guilemany, M. (1996) Int. Mat. Rev., 41 (1), 13.

    Article  CAS  Google Scholar 

  6. Knotek, O. and Schnaut, U. (1992) Process modeling of HVOF thermal spraying systems, in C. C. Berndt (ed), Thermal Spray: International Advances in Coatings Technology, ASM International, Materials Park, Ohio, pp. 811–816.

    Google Scholar 

  7. Parker, D. W. and Kutner, G. L. (1991) Adv. Mat. Process 139, 68.

    CAS  Google Scholar 

  8. Varacalle, D. J., Ortiz, M. G., Miller, C. S., Steeper, T. J., Rotolico, A. J., Nerz, J. and Riggs (II), W. L. (1992) HVOF combustion spraying of Inconel powder, in C. C. Berndt (ed), Thermal Spray: International Advances in Coatings Technology, ASM International, Materials Park, Ohio, pp. 181–187.

    Google Scholar 

  9. Srivatsan, T.S. and Lavemia, E. J. (1992) Review-Use of spray techniques to synthesize particulatereinfored metal-matrix composites, J. Mat. Sci. 27, 59–65.

    Google Scholar 

  10. Apelian, D., Wei, D. and Farouk, B. (1989) Metall. Trans. 20B, 251.

    Google Scholar 

  11. Hackett, C. M. and Settles, G. S.(1996) in C. C. Berndt (ed), Thermal Spray: Practical Solutions for Engineering Problems, Materials Park, Ohio, p 665.

    Google Scholar 

  12. Birringer, R. (1994) in G. C. Hadjipanayis and R. W. Siegel (eds.), Nanophase Materials: SynthesisProperties-Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, p.157.

    Chapter  Google Scholar 

  13. Birringer, R. (1989) Mat. Sci. & Engr., A117, pp. 33.

    Article  CAS  Google Scholar 

  14. Lau, M. L., Jiang, H. G., Nuchter, W., and Lavemia, E. J. (1998) Phys. Stat. Sol. (a), 166, pp. 257.

    Article  CAS  Google Scholar 

  15. Suryanarayana, C. (1995) Nanocrystalline materials, Int. Mat. Rev. 40, 41.

    Article  CAS  Google Scholar 

  16. Benjamin, J. S. (1992) Fundamentals of mechanical alloying, in P. H. Shingu (ed), Mechanical Alloying (Mater. Sci. Forum, Vol. 88–89), Trans Tech Publications, Switzerland, pp.1–17.

    Google Scholar 

  17. Koch, C. C.(1992) The synthesis of non-equilibrium structures by ball-milling, in P. H. Shingu (ed), Mechanical Alloying (Mater. Sci. Forum, Vol. 88–89), Trans Tech Publications, Switzerland, pp.243–262.

    Google Scholar 

  18. Jang, J. S. C. and Koch, C. C. (1990), J. Mat. Res., 5, 498.

    Article  CAS  Google Scholar 

  19. He, J., Ice, M. and Lavernia, E. J. (1998) Synthesis and characterization of nanostructured Cr3C2-NiCr, NanoStructured Materials, 10, 1271.

    Article  CAS  Google Scholar 

  20. He, J., Ice, M. and Lavernia, E. J. (1999) Synthesis of nanostructured WC-12%Co coating using mechanical milling and HVOF thermal spraying, submitted to Metall. Trans.

    Google Scholar 

  21. He, J., Ice, M. and Lavernia, E. J. (1999) Synthesis of nanostructured Cr3C2-25(NiCr) coatings, submitted to Metall. Trans.

    Google Scholar 

  22. Ahn, J. H., Chung, H.S., Watanabe, R. and Park, Y.H. (1992) Microstructural refinement & amorphization in Ti-Al, Ti-Si and Si-W system by mechanical alloying, in P. H. Shingu (ed), Mechanical Alloying (Mater. Sci. Forum, Vol. 88–89), Trans Tech Publications, Switzerland, pp.347–354.

    Google Scholar 

  23. Guilemany, J. M. and Calero, J. A. (1997) Structural characterization of chromium carbide-nickel chromium coatings obtained by HVOF spraying, in C. C. Berndt (ed.), Thermal Spray: A United Forum for Scientific and Technological Advances, ASM, Materials Park, Ohio, pp. 717–721.

    Google Scholar 

  24. Gullity, B. D.(1978) Elements of X-ray Diffraction, Addison-Wesley, Reading, MA(1978).

    Google Scholar 

  25. Luton, M.J., Jayanth, C.S., Disko, M.M., Matras, S. and Vallone, J. (1989) Mater. Res. Soc. Proc., 132, 79.

    Article  Google Scholar 

  26. Lau, M.L, Huang, H., Perez, R.J., Juarez-Islas, J. and Lavernia, E.J. (1996), NanoStruct. Mater. 7, 847.

    Article  CAS  Google Scholar 

  27. Vuoristo, P., Niemi, K., Mantyla, T., Berger, L.M. and Nebelung, M. (1995) Comparison of different hard, metal like coatings sprayed by plasma and detonation gun processess, in C. C. Berndt and S. Sampath(eds.), Thermal Spray Science & Technology, ASM International, 1995, pp. 309–315.

    Google Scholar 

  28. Russo, L. and Dorfmann, M. (1995) A structural evaluation of HVOF sprayed NiCr- Cr3C2 coatings, in A. Ohmori (ed.), Thermal Spraying: Current Status and Future Trends, High Temperature Society of Japan, 1995, pp. 681–686.

    Google Scholar 

  29. Reardon, J. D., Mignogna, R.. and Longo, F. N.. (1981) Plasma and vacuum plasma-sprayed Cr3C2 composite coatings, Thin Solid Films, 83, 345–351.

    Article  CAS  Google Scholar 

  30. Houck, D. L. and Cheney, R. F. (1984) Comparison of properties of Cr3C2-NiCr coating thermally sprayed from pre-alloyed and mechanical mixed powders, Thin Solid Films, 118, 507–513.

    Article  CAS  Google Scholar 

  31. Sasaki, M., Kawakami, F., Komaki, C. and Ishida, M.(1992) Characterization of HVOF sprayed Cr3C2 coating, in C. C. Berndt (ed.), Thermal Spray: International Advances in Coatings Technology, ASM International, pp. I65–170.

    Google Scholar 

  32. Vuoristo, P., Niemi, K., Makela, A. and Mantyla, T. (1994) abrasion and erosion wear resistance of Cr3C2NiCr coatings prepared by plasma, detonation and HVOF spraying, in C. C. Berndt and S. Sampath (eds.) Thermal Spray Industrial Applications, ASM International, pp. 121–126.

    Google Scholar 

  33. Niemi, K., Vuoristo, P., Mantyla, T., Barbezat, G., and Nicoll, A. R. (1992) Abrasion wear resistance of carbide coatings deposited by plasma and high velocity combustion process, in C. C. Berndt (ed.) Thermal Spray: International Advances in Coatings Technology, ASM International, pp. 685–689.

    Google Scholar 

  34. Liu, X. D., Nagumo, M. and Umemoto, M. (1997) Mater. Trans., JIM, 38, 1033–1039.

    CAS  Google Scholar 

  35. Suryanarayana, C., Mukhopadhyay, D., Patankar, S.N. and Froes, F. H.(1992) J. Mater. Res., 7, 2114–2117

    Article  CAS  Google Scholar 

  36. D. A. Konstantinidis, D. A., and Aifantis, E. C. (1998) NanoStructured Mater., 10, 1111–1118.

    Article  CAS  Google Scholar 

  37. Kear, B. H. and McCandlish, L. E. (1993) Nanostructured Mater., 3, 19–30.

    Article  CAS  Google Scholar 

  38. Crawmer, D.C., Krebsbach, J. D. and Riggs, W. L.(1992) Coating development for HVOF process using design of experiments, in C. C. Berndt (ed.), Thermal Spray: International Advances in Coatings Technology, ASM International, pp. 127–136.

    Google Scholar 

  39. Fukuda, Y and Kumon, M. (1995) Application of high velocity flame sprayings for the heat exchanger tubes in coal fired boilers, in A. Ohmori (ed), Thermal Spraying: Current Status and Future Trend, High Temperature Society of Japan, pp. 107–111.

    Google Scholar 

  40. Usmani, S., Sampath, S. and Herman, H. (1998) in C. C. Berndt and E. J. Lavernia (eds.), Thermal Spray Processing of Nanoscale Materials-A Conference Report with Extended Abstracts, J. of Thermal Spray Technol., 7, p 429.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

He, J., Ice, M., Lavernia, E.J. (2000). Synthesis and Characterization of Nanocomposite Coatings. In: Chow, GM., Ovid’ko, I.A., Tsakalakos, T. (eds) Nanostructured Films and Coatings. NATO Science Series, vol 78. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4052-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4052-2_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6266-1

  • Online ISBN: 978-94-011-4052-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics