Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 367))

Abstract

In a loaded cracked body the stress intensity factor K measures the strength of the singular term of the elastic solution of the stress field. In brittle materials, a crack propagates when the applied stress intensity factor KA reaches a critical value KIC which is a material’s characteristic called toughness. On the contrary, complete relaxation in plastic materials like FCC metals should lead to the immediate disappearance of the singular solution in r-1/2, i.e. to an effective stress intensity factor KE equal to zero, where KE is KA decreased to zero by plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. St John, C.F.(1975), Philos. Mag. 32, 1193–1212.

    Article  CAS  Google Scholar 

  2. Michot, G., George, A. (1989) Structure and Properties of Dislocations in Semiconductors, 1989, Inst. Phys. Corf. Series, 104, 385–396.

    CAS  Google Scholar 

  3. George, A., Michot, G. (1993), Mater. Sci. Eng. A164, 118–134.

    CAS  Google Scholar 

  4. Michot, G., Loyola de Oliveira, M.A., George, A. (1994), Mater. Sci. Eng. A176, 99–109.

    Google Scholar 

  5. Scandian, C., Hazzouzi, H., Malouffi, N., Michot, G., George A. (1999), Phys. Stat. Sol. (a) 171,67–82.

    Article  CAS  Google Scholar 

  6. Loyola de Oliveira, MA.(1994), PhD thesis, INPL Nancy, France.

    Google Scholar 

  7. Rice, J.R., Thomson, R. (1974), Philos. Mag. 29, 73–97.

    Article  CAS  Google Scholar 

  8. Schoeck, G., Puschl, W.(1991) Philos. Mag. 64, 931–934.

    Article  Google Scholar 

  9. Rice, J.R. (1992) J. Mech. Phys. Solids, 40 239–271.

    Article  CAS  Google Scholar 

  10. Zhou, S.J., Thomson, R. (1991) J. Mater. Res., 6, 639–653.

    Article  Google Scholar 

  11. Xu, G., Argon, A.S., Ortiz, M. (1997) Philos. Mag. A, 75, 341–367.

    Article  CAS  Google Scholar 

  12. Perazzo Amaral, A. (1999), Master thesis, UFES Vitoria, Brazil.

    Google Scholar 

  13. Michot, G. (1989), Crystal Properties and Preparation, Trans. Tech. Publ., 17-18, 55–98.

    Google Scholar 

  14. [14]Majumdar, B.S., Bums, S.J. (1981), Acta Metall. 29, 579–588.

    Article  CAS  Google Scholar 

  15. Kirchner, H.O.K., Michot, G.(1986), Mater. Sci Eng. 79, 169–173.

    Article  Google Scholar 

  16. Hirsch, P.B., Roberts, S.G. (1996), Acta Metall. Mater., 44, 2361–2371.

    CAS  Google Scholar 

  17. Kantha, M., Pope, D.P., Vitek, V. (1994), Scripta Metall. Mater. 31, 1349–1354.

    Article  Google Scholar 

  18. Hirsch, P.B., Roberts, S.G., Samuels, J. (1989), Proc. R. Soc. Lond. A421, 25–53.

    Google Scholar 

  19. Warren, P.D. (1989), Scripta Metall., 23, 637–642.

    Article  CAS  Google Scholar 

  20. Ebrahimi, F., Shrivastava, S. (1998), Acta Metall. Mater. 46, 1493–1502.

    CAS  Google Scholar 

  21. Gumbsch, P., Riedle, J., Fischmeister, H.F. (1998) Science, 282, 1293–1295.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Michot, G., Azzouzi, H., Maloufi, N., de Oliveira, M.A.L., Scandian, C., George, A. (2000). Possible Mechanisms for Dislocations Multiplication at, or Close to, a Crack Tip. In: Lépinoux, J., Mazière, D., Pontikis, V., Saada, G. (eds) Multiscale Phenomena in Plasticity: From Experiments to Phenomenology, Modelling and Materials Engineering. NATO Science Series, vol 367. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4048-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4048-5_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6252-4

  • Online ISBN: 978-94-011-4048-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics