Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 367))

Abstract

Quantitative atomistic modelling of annihilation of screw dislocations of opposite sign leads to a semi-quantitative account of the slip lines causing fatigue damage in ductile materials. In general terms this new result completes an experimentally assisted multiscale modelling approach and reconciles the basic yielding and exhaustion theories of fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basinski, Z.S. and Basinski, S.J. (1992) Fundamental aspects of low amplitude cyclic deformation in face-centred cubic crystals, Prog. Mater.Sci. 36, 89–148.

    Article  CAS  Google Scholar 

  2. Pedersen, O.B., Brown, L.M. and Stobbs, W.M. (1981) The Bauschinger effect in copper, Acta metall. 29, 1843–1850.

    Article  CAS  Google Scholar 

  3. Mughrabi, H. (1981) Cyclic plasticity of matrix and persistent slip bands in fatigued metals. In: Continuum Models and Discrete Systems 4 (eds. O. Brulin and R.K.T. Hsieh), North-Holland Publishing Company, Amsterdam, p. 241–257.

    Google Scholar 

  4. Mughrabi, H. (1987) The long-range internal stress field in the dislocation wall structure of persistent slip bands, phys.stat.sol. (a)104, 107–120.

    Article  Google Scholar 

  5. Mughrabi, H. (1988) Dislocation clustering and long-range internal stresses in monotonically and cyclically deformed metal crystals, Revue Phys. Appl. 23, 367–379.

    Article  Google Scholar 

  6. Brown, L.M. (1981) Dislocations and the fatigue strength of metals, In: Dislocation Modelling of Physical Systems (eds. M.F. Ashby et al.), Pergamon Press, New York, p. 51–68.

    Google Scholar 

  7. Brown, L.M. (1991) Towards a sound understanding of dislocation plasticity, Metall.trans. 22A, 1964–1968.

    Google Scholar 

  8. Brown, L.M. (1999) Dislocation plasticity in persistent slip bands, Mater.Sci.Engng., in press.

    Google Scholar 

  9. Pedersen, O.B. (1988) Mapping of basic fatigue mechanisms. In: Basic Mechanisms in Fatigue of Metals (eds. P. Lukas and J. Polak), Akademia, Prague, p. 169–183.

    Google Scholar 

  10. Pedersen, O.B. (1990) Mechanism maps for cyclic plasticity and fatigue of single phase materials, OVERVIEW NO. 89, Acta metall. mater. 38, 1221–1239, and Risø-R-595.

    Article  CAS  Google Scholar 

  11. Pedersen, O.B. (1996) A static-dynamic model for the process of cyclic saturation in fatigue of metals, Phil.Mag. A 73, 829–858.

    Article  CAS  Google Scholar 

  12. Devincre, B. and Kubin, L.P. (1997) Mesoscopic simulations of dislocations and plasticity, Mater.Sci.Engng.A 234-236, 8–14.

    Article  Google Scholar 

  13. Kubin, L.P. and Devincre, B. (1999) From dislocation mechanisms to dislocation microstructures and strain hardening, In: Proc. 20th Risø International Symposium.

    Google Scholar 

  14. Zhou, S.J., Beazley, D.M., Lomdahl, P.S. and Holian, B.L. (1998) Large-scale molecular dynamics simulation of dislocation intersection in copper, Science 279, 1525–1527.

    Article  CAS  Google Scholar 

  15. Rasmussen, T., Jacobsen, K.W., Leffers, T., Pedersen, O.B., Srinivasan, S.G., and Jónsson, H. (1997) Atomistic determination of cross-slip pathway and energetics, Phys.Rev.Lett. 79, 3676–3679.

    Article  CAS  Google Scholar 

  16. Rasmussen, T., Vegge, T., Leffers, T., Pedersen, O.B. and Jacobsen, K.W. (1999) Simulation of structure and annihilation of screw dislocation dipoles, Phil. Mag.,in press.

    Google Scholar 

  17. Bretschneider, J. and Holste, C. (1998) Cyclic plasticity of fcc single crystals from nanoscale to macroscale. In: Proc. 19th Risø International Symposium.

    Google Scholar 

  18. Kuhlmann-Wilsdorf, D. and Laird, C. (1977) Dislocation behaviour in fatigue-II. Friction stress and back stress as inferred from an analysis of hysteresis loops, Mater. Sci. Engng. 37, 111–120.

    Google Scholar 

  19. Orowan, E. (1958) Causes and effects of internal stresses, In: Internal Stresses and Fatigue in Metals. (eds. G.M. Rassweiler and W.L. Grube), Elsevier, London, p.59–80.

    Google Scholar 

  20. Eshelby, J.D. (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc A 241, 376–396.

    Article  Google Scholar 

  21. Pedersen, O.B. and Carstensen, J.V. (1999) Internal stresses and dislocation dynamics in cyclic plasticity of metals, Mater.Sci.Engng, in press.

    Google Scholar 

  22. Winter, A.T.(1974) A model for the fatigue of copper at low plastic strain amplitudes, Phil. Mag. 30, 719–738.

    Google Scholar 

  23. Carstensen, J.V. (1998) Ph.D. thesis (DTU) on Structural Evolution and Mechanisms of Fatigue in Polycrystalline Brass, Rise National Laboratory, Roskilde.

    Google Scholar 

  24. Carstensen, J.V. and Pedersen, O.B. (1997) Texture and grain-size effects on cyclic plasticity in copper and copper-zinc, Mater.Sci.Engng.A 234-236, 497–500.

    Article  Google Scholar 

  25. Mott, N.F. (1958) A theory of the origin of fatigue cracks, Acta Metall. 6,195–197

    Article  CAS  Google Scholar 

  26. Seeger, A., Bemer, R. and Wolf, H. (1953) Die experimentelle bestimmung von Stapfehlerenergien kubisch-flächenzentrierter Metalle, Z. Phys. 155, 247–262.

    Google Scholar 

  27. Basinski, S.J., Basinski, Z.S. and Howie, A. (1969) Early stages of fatigue in copper single crystals, Phil.Mag. 19 899–924.

    Article  CAS  Google Scholar 

  28. Pedersen, O.B. and Winter, A.T. (1982) Fatigue hardening and nucleation of persistent slip bands in copper, Acta metall. 30, 711–718.

    Article  CAS  Google Scholar 

  29. Pedersen, O.B. and Winter, A.T. (1995) Cyclic hardening and slip localization in single slip oriented copper crystals, phys.stat.sol (a) 149, 281–296.

    Article  CAS  Google Scholar 

  30. Kuhlmann-Wilsdorf, D. and Laird, C. (1979) Dislocation behaviour in fatigue III. Properties of loop patches — do they participate in fatigue cycling? Mater.Sci.Engng. 39, 127–139.

    Article  Google Scholar 

  31. Seeger, A. and Frank, W. (1988) Structure formation by dissipative processes in crystals with high defect densities, Solid State Phenomena 3 and 4, 125–138.

    Article  Google Scholar 

  32. Essmann, U. and Mughrabi, H. (1979) Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities, Phil.Mag. A40. 731–756.

    Google Scholar 

  33. Mughrabi. H., Ackermann, F. and Herz, K. (1979) Persistent slipbands in fatigued face-centered and bodycentered cubic metals. In: Fatigue Mechanisms (ed.J.T. Fong), ASTM-STP 675, American Society for Testing and Materials, p. 69–105.

    Google Scholar 

  34. Neumann, P. (1968) In: Constitutive Equations in Plasticity (ed. A.S. Argon), MIT Press, Cambridge, p.449.

    Google Scholar 

  35. Lisiecki, L.L. and Pedersen, O.B. (1991) Temperature dependence of cyclic saturation in low amplitude fatigue of copper single crystals, Acta metall. mater. 39, 1449–1456.

    Article  CAS  Google Scholar 

  36. Holzwarth, U. and Essmann, U. (1994) Temperature-induced rearrangement of the dislocation pettern of persistent slip bands in copper single crystals, Appl. Phys. A58, 197–210.

    CAS  Google Scholar 

  37. Hirsch, P.B. and Humphreys, F.J. (1971) Proc. Roy. Soc A 318, 45.

    Google Scholar 

  38. Antonopoulos, J.G., Brown, L.M. and Winter, A.T. (1976) Vacancy dipoles in fatigued copper, Phil. Mag. 34, 549–563.

    Article  CAS  Google Scholar 

  39. Carstensen, J.V. and Pedersen, O.B. (1999) Dislocation microstructures associated with cyclic hardening and softening in polycrystalline α-brass, Proc. 19th Risø International Symposium.

    Google Scholar 

  40. Pedersen, O.B., Carstensen, J.V. and Rasmussen, T. (1998) Modelling metal fatigue at micron-and nanoscales, Proc. 19th Riso International Symposium.

    Google Scholar 

  41. Bonneville, J., Escaig, B. and Martin, J.L. (1988) A study of cross-slip activation parameters in pure copper, Acta metall. 36, 1989–2002.

    Article  CAS  Google Scholar 

  42. Basinski, Z.S., Pascual, R. and Basinski, S.J. (1983) Low amplitude fatigue of copper single crystals-I. The role of the surface in fatigue failure, Acta metall. 31, 591–602.

    Article  Google Scholar 

  43. Carstensen, J.V. and Pedersen, O.B. (1999) Dislocation microstructures associated with cyclic hardening and softening in polycrystalline a-brass, Proc. 18th Riso International Symposium.

    Google Scholar 

  44. Jackson, P.J. (1985) Dislocation modelling of shear in fcc crystals, Progress Mater. Sci. 29, 139–175.

    Article  CAS  Google Scholar 

  45. Reinhard, L., Schönfeld, B., Kostorz, G. and Bührer, W. (1990) Short-range order in a-brass, Phys. Rev. B 41, 1727–1734.

    Article  CAS  Google Scholar 

  46. Hazzledine, P.M. (1985) Direct observations of anisotropie and surface effects on dislocations, In: Fundamentals of Deformation and Fracture (eds. B.A. Bilby et al.), Cambridge University Press, Cambridge, p. 385–399.

    Google Scholar 

  47. Tippelt, B., Bretschneider, J. and Holste, C. (1996) Influence of temperature on microstructural parameters of cyclically deformed nickel single crystals, Phil. Mag. Lett. 47 161–166.

    Article  Google Scholar 

  48. Basinski, Z.S. and Basinski, S.J. (1985) Surface geometry in fatigued copper crystals. In: Fundamentals of Deformation and Fracture (eds. B.A. Bilby et al.), Cambridge University Press, Cambridge, p. 583–594.

    Google Scholar 

  49. Rasmussen, T., Jacobsen, K.W., Leffers, T., Pedersen, O.B., (1997) Simulations of the atomic structure, energetics, and cross slip of screw dislocations in copper, Phys. Rev. 56, 2977–2990.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pedersen, O.B. (2000). Fatigue and Associated Microstructural Aspects. In: Lépinoux, J., Mazière, D., Pontikis, V., Saada, G. (eds) Multiscale Phenomena in Plasticity: From Experiments to Phenomenology, Modelling and Materials Engineering. NATO Science Series, vol 367. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4048-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4048-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6252-4

  • Online ISBN: 978-94-011-4048-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics