Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 367))

  • 770 Accesses

Abstract

From the point of view of engineering exploitation of materials at high temperatures the following modes of deformation are important: creep, fatigue and interaction of creep with fatigue. From the physical point of view all these modes of high temperature deformation are conditioned by the plastic deformation, i.e. by the generation and motion of dislocations and other defects of the crystal lattice. Macroscopically, the basic difference between the high temperature deformation and the low temperature deformation lies in the degree of the dependence of deformation on time. The low temperature deformation of metals is — in the ideal case — fully timeindependent, the high temperature deformation depends not only on stress and temperature, but always also on time. For example, for a metallic body loaded by a constant stress it holds:

  • • for low temperatures ε = f(σ, T) time-independent elastic-plastic behaviour, for high temperatures

  • • ε = f(σ, T, t) time-dependent creep behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lukáš, P., Čadek, J., Šustek, V. and Kunz, L. (1996) Creep of CMSX-4 single crystals of different orientations in tension and compression, Mat.Sci.Eng. A208, 149–157.

    Google Scholar 

  2. Straub, S., Meier, M., Ostermann, J. and Blum, W. (1993) Entwicklung der MikroStruktur und der Festigkeit des Stahles X20CrMoV121 bei 823 K während Zeitstandbeanspruchung und Glühung, VGB Kraftwerkstechnik, 73, 744–752.

    CAS  Google Scholar 

  3. Whittenberger, J.D., Nathal, M.V., and Gaydosh, D.J. (1994) Compressive and tensile creep in Fe-40Al-0.1Zr-0.4B at 1100 K, Intermetallics, 2, 193–200.

    Article  CAS  Google Scholar 

  4. Orlová, A., Kuchařová, K., Březina, J., Krejči, J. and Čadek, J. (1993) High temperature creep in an AI4C3 dispersion strengthened aluminium alloy in tension and compression. Scripta metall. mater., 29, 63–68.

    Article  Google Scholar 

  5. Lukáš, P., Kunz, L. and Sklenička, V. (1990) Creep, high-cycle fatigue and cyclic creep in copper at 500 °C, Res Mechanika, 29, 345–358.

    Google Scholar 

  6. Čadek, J. (1988) Creep in Metallic Materials, Elsevier, Amsterdam.

    Google Scholar 

  7. Frost, H.J. and Ashby, M.F. (1982) Deformation-Mechanism Maps, Pergamon Press, Oxford.

    Google Scholar 

  8. Ashby, M.F. and Jones, D.R.H. (1980) Engineering Materials I, Pergamon Press. Oxford.

    Google Scholar 

  9. Svoboda, J. and Lukáš, P. (1998) Model of creep in <001>-oriented superalloy single crystals. Acta mater., 46, 3421–3431.

    Article  CAS  Google Scholar 

  10. Pollock, T.M. and Argon, A.S. (1992) Creep resistance of CMSX-3 nickel base superalloy single crystals, Acta metall. mater., 40, 1–30.

    Article  CAS  Google Scholar 

  11. Sass, V. and Feller-Kniepmeier, M. (1998) Orientation dependence of dislocation structures and deformation mechanisms in creep deformed CMSC-4 single crystals, Mat.Sci.Eng., A245, 19–28.

    CAS  Google Scholar 

  12. Nix, W.D. and Ilschner, B. (1979), in P. Haasen, V. Gerold and G. Kostorz (eds.), Proc. 5th Int. Conf. Strength of Metals and Alloys, ICSMA 5,. Pergamon Press, Oxford, Vol. 3, p. 1503.

    Google Scholar 

  13. Bendersky, L., Rosen, A. and Mukherjee, A.K. (1985) Creep and dislocation substructure. Int. Metals Rev., 30, 1–15.

    Article  CAS  Google Scholar 

  14. Orlová, A. and Čadek, J. (1986) Dislocation structure in high temperature creep of metals and solid solution, Mater. Sci. Eng. 77, 1–18.

    Article  Google Scholar 

  15. Orlová, A. and Čadek, J. (1973) Some substructural aspects of high-temperature creep in materials, Phil. Mag., 28, 891–914.

    Article  Google Scholar 

  16. Orlová, A., Pahutová, M. and Čadek, J. (1972) Dislocation structure and applied effective and internal stress in high-temperature creep in alpha iron, Phil. Mag., 25, 865–877.

    Article  Google Scholar 

  17. Ashby, M.F., Gandhi, C. and Taplin, D.M.R. (1979) Fracture-mechanism maps and their construction for f.c.c. metals and alloys, Acta metall., 27, 699–729.

    Article  CAS  Google Scholar 

  18. Obrtlík, K., Lukáš, P. and Polák, J. (1998) Low cycle fatigue of superalloy single crystals CMSX-4, in K.T. Rie and P.D. Portella (eds.), Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, Elsevier, Amsterdam, pp. 33–38.

    Google Scholar 

  19. Sáxena, A. (1996) Fatigue crack growth in elevated temperature power-plant materials and components, in G. Lütjering and H. Nowack (eds.), Fatigue ′96, Pergamon, pp. 729–740.

    Google Scholar 

  20. Lukáš, P., Kunz, L. and Sklenička, V. (1994) Interaction of high cycle fatigue with high temperature creep, in H. Oikawa et al.(eds.), Strength of Materials, ICSMA 10, The Japan Institute of Metals, pp. 17–24.

    Google Scholar 

  21. Lukáš, P., Kunz, L. and Svoboda, J. (1997) Retardation of creep in <001>-oriented superalloy CMSX-4 single crystals by superimposed cyclic stress, Mater. Sci. Eng., A234-236, 459–462.

    Google Scholar 

  22. Bullough, C.K., Toulios, M., Oehl, M. and Lukáš, P. (1998) The characterisation of the single crystal superalloy CMSX-4 for industrial gas turbine blading applications, in J. Lecomte-Beckers, F. Schubert and P.J. Ennis (eds.), Materials for Advanced Power Engineering 1998, Forschungszentrum Jülien, pp. 861–878.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lukáš, P. (2000). High Temperature Deformation. In: Lépinoux, J., Mazière, D., Pontikis, V., Saada, G. (eds) Multiscale Phenomena in Plasticity: From Experiments to Phenomenology, Modelling and Materials Engineering. NATO Science Series, vol 367. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4048-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4048-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6252-4

  • Online ISBN: 978-94-011-4048-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics