Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 367))

  • 766 Accesses

Abstract

Plasticity is a very important characteristic of a material since it is crucial for its technological application. The majority of pure metals as well as their numerous alloys exhibits very good deformability at room or enhanced temperatures and therefore, they can be more or less easily formed into a required shape. However, some impurities can qualitatively change the deformation mode of the metal. It has been known for more than one hundred years, for example, that copper exhibiting excellent plasticity, becomes brittle by addition of about one percent antimony [1]. Similarly, bismuth in much lower bulk concentrations also embrittles copper in such a way that it separates intergranularly under loading [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roberts Austen, W.C. (1888) On certain mechanical properties of metals considered in relation to the periodic law. Phil. Trans. Soc. A 179. 339 349.

    Google Scholar 

  2. Watanabe. T. (1989) Grain boundary design for the control of intergranular fracture. Mater. Sci. Forum 46, 25 47.

    Google Scholar 

  3. Lejcek. P. and Hofmann, S. (1995) Thermodynamics and structural aspects of grain boundary segregation. Cnt. Rev. Sol. Stale Maler. Sci. 20. 1 85.

    Google Scholar 

  4. Kalderon. D. (1972) Steam turbine failure at Hinkley Point ‘A’, Proc. Instn. Mech. Engrs. 186, 341 377.

    Google Scholar 

  5. Watanabe. T. (1984) An approach to grain boundary design for strong and ductile polycrystals. Res Mech. 11, 47 84.

    Google Scholar 

  6. Guttmann, M. and McLean. D. (1979) Grain boundary segregation in multieomponent systems, in W.C. Johnson and J.M. Blakely (eds.). Interfacial Segregation, ASM. Metals Park, OH, pp. 261 348.

    Google Scholar 

  7. Lejcek, P. (1993) Interfacial segregation in a-iron. Int. J. Modern Phys. B 7, 528–533.

    Article  CAS  Google Scholar 

  8. Sutton, A.P. and Ballufti (1995) Interfaces in Crystalline Solids, Clarendon, Oxford.

    Google Scholar 

  9. Furtkamp, M., Lejcek. P. and Tsurekawa. S. (1998) Grain boundary migration in Fe-3%Si alloys. Interface Sci. 6. 59–66.

    Article  CAS  Google Scholar 

  10. Budke, E., Herzig. Chr., Prokotjev. S. and Shvindlerman. L.S. (1996) Orientation dependence of 195Au and 64Cu diffusion along symmetric [001 ] tilt grain boundaries in Cu. Mater. Sci. Forum 207-209, 465 468.

    Google Scholar 

  11. Yamashita, M., Mimaki, T., Hashimoto, S. and Miura, S. (1991) Stress corrosion cracking of [110] and [100] tilt boundaries of α-Cu Al alloy. Philos. Mag. A 63. 707–726.

    Article  CAS  Google Scholar 

  12. Thomas, W.R. and Chalmers. B. (1955) The segregation of impurities to grain boundaries, Acta Metall. 3, 17–21.

    Article  CAS  Google Scholar 

  13. Watanabe, T., Kitamura, S. and Karashima, S. (1980) Grain boundary hardening and segregation in alpha iron-tin alloy, Acta Metall. 28, 455–463.

    Article  CAS  Google Scholar 

  14. Suzuki, S., Abiko, K. and Kimura. H. (1981) Phosphorus segregation related to the grain boundary structure in an Fe P alloy, Scripta Metall. 15. 1139–1143.

    Article  CAS  Google Scholar 

  15. Tatsumi. K., Okumura. N. and Funaki. S. (1986) Dependence of grain boundary segregation of phosphorus on temperature and grain boundary misorientation in α-iron, Trans. JIM Suppl. 27, 427 434.

    Google Scholar 

  16. Biscondi, M. (1982) Structure et proprietes mechaniques des joints de grains. J. Phys. France 43, C6, 293–308.

    Google Scholar 

  17. Fraczkiewicz. A. and Biseondi, M. (1985) Intergranular segregation of bismuth in copper bicrystals. J. Phys. France 46. C4. 497 503.

    Google Scholar 

  18. Stolarz. J. and LeCoze. J. (1990) Intergranular corrosion of stainless steels under transpassive conditions. J. Phys. France 51, C1, 641 645.

    Google Scholar 

  19. Hofmann, S. and Lejcek. P. (1997) Solute segregation at grain boundaries. Interface Sci. 3, 241–267.

    Article  Google Scholar 

  20. Paidar. V. (1987) A classification of symmetrical grain boundaries. Acta Metall. 35, 2035 2048.

    Google Scholar 

  21. Lejček, P. and Hofmann, S. (1996) On the role of grain boundary plane orientation in solute segregation. Mater. Sci. Forum 207–209. 745–748.

    Google Scholar 

  22. Lejcek, P., Paidar. V. and Hofmann, S. (1999) Special [100] tilt grain boundaries in iron: A segregation study. Mater. Sci. Forum 294-296. 103–106.

    Article  CAS  Google Scholar 

  23. Hondros. E.D., Seah. M.P., Hofmann. S. and Lejcek. P. (1996) Surface and interfacial microehemistry, in R.W. Cahnand P. Haasen (eds.) Physical Metallurgy. 4th ed.. North Molland, Amsterdam, pp. 1201–1289.

    Chapter  Google Scholar 

  24. Watanabe, T. (1993) Toward grain boundary design and control for advanced materials, in U. Erb and G. Palumbo(eds.). Grain Boundary Engineering, Canad. Inst. Mining Metall. Petrol., Montreal, pp. 57–87.

    Google Scholar 

  25. Rändle. V. (1996) The Role of Coincidence Site Lattice in Grain Boundary Engineering, The Inst. Materials. London.

    Google Scholar 

  26. Palumbo. G., Lehoekey, K.M. and Lin. P. (1998) Applications for grain boundary engineered materials, J. Metals 50 40–43.

    CAS  Google Scholar 

  27. Schwartz, A.J. and King. W.K. (1998) The potential engineering of grain boundaries through thermomechanical processing. J. Metals 50, 50 58.

    Google Scholar 

  28. Watanabe. T., Suzuki. Y., Tanii. S. and Oikawa, H. (1990) The effects of magnetic annealing on reerystallization and grain-boundary character distribution (GBCD) in iron cobalt alloy polycrystals. Philos. Mag. Lett. 62, 9–17.

    Article  CAS  Google Scholar 

  29. Watanabe, T. (1994) The impact of grain boundary character distribution on fracture in polycrystals. Mater. Sci. Eng. A 176, 39–49.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lejček, P. (2000). From Anisotropy of Grain Boundary Segregation to Grain Boundary Design for Polycrystals. In: Lépinoux, J., Mazière, D., Pontikis, V., Saada, G. (eds) Multiscale Phenomena in Plasticity: From Experiments to Phenomenology, Modelling and Materials Engineering. NATO Science Series, vol 367. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4048-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4048-5_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6252-4

  • Online ISBN: 978-94-011-4048-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics