Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 367))

Abstract

The intrinsically ductile metal, which is brought in contact with certain liquid metals, exhibits brittle fracture at low tensile stress. This phenomenon is known as a liquid metal embrittlement (LME). Many theories have been suggested to explain this ductile-to-brittle transition in the presence of liquid metals (see [1] for the review), however, none of them is proven to be universal. Indeed, the fracture mechanics by itself is a complex subject and the basic mechanisms behind brittle vs. ductile behavior are still far from being understood [2]. Introduction of the liquid metal further complicates the originally complex situation, and this is the reason why LME is until now a subject of high controversy [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Joseph, B., Picat, M. and Barbier, F. (1999) Liquid metal embrittlement: a state-of-the-art appraisal, Eur. Phys. Joum.-Appl. Phys. 5, 19–31.

    Article  CAS  Google Scholar 

  2. Thomson, R.M. (1996) Fracture, in R.W. Cahn and P. Haasen (eds.), Physical Metallurgy, Elsevier, Amsterdam, pp. 2207–2291.

    Chapter  Google Scholar 

  3. Rice, J.R. and Wang, J.-S. (1989) Embrittlement of Interfaces by Solute Segregation, Mater. Sci. Engng. A 107, 23–40.

    Article  Google Scholar 

  4. Lynch, S.P. (1988) Environmentally assisted cracking: overview of evidence for an adsorption-induced localized-slip process, Acta metall. 36, 2639–2661.

    Article  CAS  Google Scholar 

  5. Gordon, P. and An, H.H. (1982) The mechanism of crack initiation and crack propagation in metal-induced embrittlement of metals, Metall. Trans. A 13, 457–47

    Article  Google Scholar 

  6. Kaur, I., Mishin, Y. and Gust, W. (1995) Fundamentals of Grain and Interphase Boundary Diffusion, Wiley, Chichester, pp. 405–412.

    Google Scholar 

  7. Lawn, B. (1993) Fracture of Brittle Solids, Cambridge University Press, Cambridge, pp. 106–142.

    Book  Google Scholar 

  8. Dietrich, S. (1988) Wetting Phenomena, in C. Domb and J. Lebowitz (eds.), Phase Transitions and Critical Phenomena, Academic press, New York.

    Google Scholar 

  9. Clarke, D.R. (1987) On the equilibrium thickness of intergranular glass phases in ceramic materials, J. Amer. Ceram. Soc. 70, 15–22.

    Article  CAS  Google Scholar 

  10. Rabkin, E. and Gust, W. (1997) Thermodynamics and kinetics of grain boundary wetting phenomena, Trans. IM 50. 619–629

    CAS  Google Scholar 

  11. Straumal, B., Semenov, V., Glebovsky, V. and Gust, W. (1997) Grain Boundary Wetting Phase Transition in the Mo-Ni System, Defect Diff. Forum 143-147, 1517–1522.

    Article  CAS  Google Scholar 

  12. Rabkin, E.I., Semenov, V.N., Shvindlennan, L.S. and Straumal, B.B. (1991) Penetration of tin and zinc along a 43° [100] tilt grain boundaries in Fe-5 at.%Si alloy: premelting phase transition? Acta metall. mater. 39. 627–639.

    Article  CAS  Google Scholar 

  13. Noskovich, Q.I., Rabkin, E.I., Semenov, V.N., Straumal, B.B. and Shvindlennan, L.S. (1991) Wetting and premelting phase transition in 38° [100] tilt grain boundaries in (Fe-12 at.%Si) Zn alloy in the vicinity of the A2-B2 bulk ordering in Fe-12 at.%Si alloy, Acta metall.mater. 39, 3091–3096.

    Article  CAS  Google Scholar 

  14. Straumal, B.B., Noskovich, O.I., Semenov, V.N., Shvindlennan, L.S., Gust, W. and Predel. B. (1992) Premelting transition on 38°<100> tilt grain boundanes in (Fe-10at.%Si)-Zn alloys, Acta metall.mater. 40, 795–801.

    Article  CAS  Google Scholar 

  15. Rabkin, E. (1996) Grain Boundary Interdiffusion in the Case of Concentration-Dependent Grain Boundary Diffusion Coefficient, Interface Sci. 3, 219–226.

    CAS  Google Scholar 

  16. Chang, L.-S., Rabkin, E., Straumal, B., Hofmann, S., Baretzky, B. and Gust, W. (1998) Grain boundary segregation in the Cu-Bi system, Defect Diff. Forum 156, 135–146.

    Article  CAS  Google Scholar 

  17. Chang, L.-S., Rabkin, E., Straumal, B., Baretzky, B. and Gust, W. (1999) Thennodynamic aspects of the grain boundary segregation in Cu(Bi) alloys, Acta mater., in press.

    Google Scholar 

  18. Hsieh, T.E. and Balluffi, R.W. (1989) Experimental study of grain boundary melting in Al, Acta metall. 37, 1637–1644

    Article  CAS  Google Scholar 

  19. Rabkin, E. and Snapiro, I. (1999) Wetting of low angle grain boundary, Scripta mater, will be submitted.

    Google Scholar 

  20. Glickman E.E. (1999) private communication.

    Google Scholar 

  21. Straumal, B., Rabkin, E., Lojkowski, W., Gust, W. and Shvindlennan, L.S. (1997) Pressure influence on the grain boundary wetting phase transition in Fe-Si alloys, Acta mater. 45, 1931–1940.

    Article  CAS  Google Scholar 

  22. Hofmann, S. and Lejcek, P. (1996) Solute segregation at grain boundaries, Interface Sci. 3, 241–267.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rabkin, E. (2000). Grain Boundary Embrittlement by Liquid Metals. In: Lépinoux, J., Mazière, D., Pontikis, V., Saada, G. (eds) Multiscale Phenomena in Plasticity: From Experiments to Phenomenology, Modelling and Materials Engineering. NATO Science Series, vol 367. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4048-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4048-5_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6252-4

  • Online ISBN: 978-94-011-4048-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics