Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 367))

Abstract

“Liquid metal embrittlement” (LME) describes reduction in ductility and strength of metals under the simultaneous action of tensile stress and the wetting liquid metals (LM). LME is encountered with many aggressor / victim combinations and in many fields. Among them are soldering / welding, LM assisted superplasticity, cracking of heat resistant alloys with minute quantities of low melting phases, nuclear areas and military applications, e.g. reactors with LM coolants used in Russian nuclear submarines and so called “non-lethal” weapons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Joseph, B., Piscat, M., and Barbier, F. (1999) Liquid metal embrittlement: A state-of — the-art appraisal, Eur. Phys. J.AP 5, 19–31

    Article  CAS  Google Scholar 

  2. Robertson, W. M. (1966) Propagation of a crack filled with liquid metals, Trans. AIME, 236, 1478–1486

    CAS  Google Scholar 

  3. Westwood, A. R. C., Preece, C. M., and Kamdar M. H. (1971) Brittle fracture in liquid metals, in H. Liebowitz (ed.), Fracture, v.3, Academ. Press, NY, pp. 589–636

    Google Scholar 

  4. Lynch, S. P., LME in an Al 6%Zn 3%Mg alloy (1981) Acta Metall., 29, 325–340;. (1988) Environmentally assisted cracking; overview of evidence for an adsorption induced localized slip process Acta Metall., 36, 2639-2661

    Article  CAS  Google Scholar 

  5. Saruchev K. Yu. (1975) Ph.D. Thesis, Moscow State University, pp. 19

    Google Scholar 

  6. Glickman E. and Igoshev V. (1991) Kinetics and mechanism of LME in polycrystalline materials, STP, Inst. Microelectronics. Techn. and Mater., USSR AS, Moscow, pp. 50 (in Russian)

    Google Scholar 

  7. Glickman, E. E. and Goryunov Yu. V. (1977) Mechanism of Rhebinder effects in metallic systems, Proc. Moscow State Univ., Ser. Chemistry, 32, 36–47

    Google Scholar 

  8. Glickman, E., Gorynov, Y., Saruchev, K., and Demin, V. (1976) On the role of structure of the crystalliquid interphase in the manifestations of the Rhebinder effect in metals, Sov. Phys. Chem. Dokl. 227, 645–648

    Google Scholar 

  9. Glickman E., Gorynov Yu.(1978) Mechanism of embrittlement by liquid metals and other manifestations of the Rehbinder effects in metal systems, Sov. Mater. Sci., 4, 355–364

    Google Scholar 

  10. Glickman E., Gorynov Yu., and Demin V. (1985) The effect of intercrystalline internal adsorption of Bi in the interegranular fracture of Cu in liquid Bi and the mechanism of LME, Phys. Chem. Mech.. Surfaces, 2, 3041–3052

    Google Scholar 

  11. Glickman E., E., et al. (1973) Influence of intercrystalline internal adsorption on LME, Sov. Phys. J., 7, 7–13

    Google Scholar 

  12. Shchukin E., D. (1977) Environmentally induced lowering of surface energy and the mechanical behavior of solids, in R. Latanision and J. Fourie (eds.), Surface Effects in Crystal Plasticity, NATO ASI Series, Ser. E 317 Nordhoff, Leyden, pp. 701–736

    Google Scholar 

  13. Gorse, D., see in this volume

    Google Scholar 

  14. Soldatchenkova, L. S. (1976), Ph. D. Thesis, Moscow University, pp. 190

    Google Scholar 

  15. Glickman, E., Cherepanov A., and Tuzov, L. (1979) Kinetics of crack propagation and fracture of Cu under creep, Sov. Phys. Met. and Metallography, 47, 649–656

    Google Scholar 

  16. Glickman, E., Cherepanov A., and Tuzov, L. (1980), Durability of Cu in Bi-Pb melts under creep, Sov. Phys. J., 23, 364–374

    Article  Google Scholar 

  17. Igoshev, V. (1987), Ph.D. Thesis, Moscow Alloy and Steel Institute, pp. 208

    Google Scholar 

  18. Glickman, E., Sarychev, K., Demin V., and Goryunov, Yu. (1976) Fracture kinetics and mechanism for Cu under deformation in surface-active melts, Communication II: Mechanism of subcritical crack growth, Sov. Phys. J., 5, 16–26

    Google Scholar 

  19. Glickman, E.,. Igoshev, V., and Braginsky, A.. (1985) On the dissolution condensation mechanism of LME: Interegranular fracture kinetics and acoustic emission in a-brass wetted with mercury, Phys. Chem. Mech. Surfaces, 10, 137–143

    Google Scholar 

  20. Glickman E. E., Molchanova, N. A., and Panin, V., E.. (1981) Durability and kinetics of fracture for Cu deformed in Hg, Sov. Phys. J., 3, 49–53

    Google Scholar 

  21. Glickman, E., Sarychev, K., Demin V., and Goryunov, Yu. (1976) Fracture kinetics and mechanism for Cu under deformation in surface-active melts, Communication IV: The LME macroscopic manifestations and micromechanism, Sov. Phys. J., 7, 22–29

    Google Scholar 

  22. Riedel, H. (1993) Fracture Mechanics, in R. W. Cahn et al. (eds.), Materials Science and Technology v.6, VCH Publ. NY, pp. 568–628

    Google Scholar 

  23. In these studies large statistics of micro-cracks (L(t) = 5-250 μm) was obtained by SEM inspection of the polished sections prepared from 1 mm diameter samples unloaded after various periods t under stress, the averaged length of 3–5 longest cracks was then presented as the L(t) dependence. The total number of the cracks inspected for Cu-(Bix Pb1-x) samples is about 3-104.

    Google Scholar 

  24. Glickman, E., Sarychev, K., Demin V., and Goryunov, Yu. (1976) Fracture kinetics and mechanism for Cu under deformation in surface-active melts, Communication I: Fracture kinetics, Sov. Phys. J., 5, 7–15.

    Google Scholar 

  25. Chadek, J. (1988) Creep in Metallic Materials, Academia Prague

    Google Scholar 

  26. Stevens R.. N. and Dutton, R. (1971) The propagation of Griffith cracks at high temperatures by mass transport processes, Mater. Sci. Eng., 8, 220–234

    Article  CAS  Google Scholar 

  27. Sutton A. P. and Balluffi, R. W. (1996) Interfaces in Crystalline Materials, Clarendon Press, Oxford.

    Google Scholar 

  28. Vook, R. W. (1966) Direct observations of LME in the solid copper-liquid bismuth system in A. R. C. Westwood and N. S. Stollolff (eds.) Environment-Sensitive Mechanical Behavior, Gordon and Breach, NY, 657–659

    Google Scholar 

  29. Su, Y. J., Wang, Y. B., and Chu, W. Y.(1998) Mechanism of LME for aluminum in Hg + 3 at.% Ga, in Proc. of the NACE Conf. Corrosion 98, paper No. 255, NACE, Houston

    Google Scholar 

  30. To illustrate how fast it can be: at T = 1/2 TM (TM is the melting point of a solid metal) the bulk diffusion coefficient in liquid metals DL ∼ 10-5 cm2/ s exceeds DGB the GB diffusivity in solid FCC metals by about 10 4 times [Kaur, I. and Gust, W. (1989) Fundamentals of Grain and Interphase Boundary Diffusion, Ziegler Press, Stuttgart]

    Google Scholar 

  31. Rostoker, W., McCaughey, J. M., and Markus, H. (1960) Embrittlement by Liquid Metals, Nostrand-Rheinhold, NY

    Google Scholar 

  32. Likhtman, V. I., Schukin, E. D., and Rebinder, P. A. (1962) Physicochemical Mechanics of Metals [in Russian], AS USSR, Moscow

    Google Scholar 

  33. Nikitin, V. I., (1967) Physicochemical Phenomena in the Interaction of Liquid and Solid Metals [in Russian], Atomizdat, Moscow

    Google Scholar 

  34. Popovich, V. V. and Dmukhovskaya, I. G. (1978) Rebinder Effect in the fracture of armco iron in liquid metals, Sov. Mater. Sci., 4, 365–370

    Google Scholar 

  35. Glickman E., Go, Y., and Ledovskaya, I. (1979) The kinetics of failure of Cu in the presence of liquid Bi with a chemical active addition of Sb, Sov. Mater. Sci. 6, 446–450.

    Google Scholar 

  36. Bonzel, H. P. (1990) Surface Diffusion in Metals, Landoldt-Bernstein, New Series, III/26, Springer, Berlin.

    Google Scholar 

  37. Kaur, I. and Gust, W. (1989) Fundamentals of Grain and Interphase Boundary Diffusion, Ziegler Press, Stuttgart

    Google Scholar 

  38. Just to illustrate how significant the effect can be, we estimated DAS for Cu-Bi system (with T= 573K and the eutectic TM3D = 543K) and arrived at: DAS ≈ 10 -4 cm2 / s. This is about 105 times larger than Ds at the same temperature [37]. Comparing now the atomic flux away from the crack tip caused by the surface diffusion JAS oc DAS hs (with hs ≈10-7 cm being the diffusion thickness of the surface, and δ ≈3 10-5 cm [7, 16, 21] to its liquid diffusion counterpart JL ∈ C∈L DL δ, we get: (JAS / JL) ∼1. This suggests that even with C∞L → 0, the surface diffusion can likely cause rather fast crack extension.

    Google Scholar 

  39. Glickman, E., Demin, V., Sarychev, K., and Goryunov, Yu. (1976) Fracture kinetics and mechanism for Cu under deformation in surface-active melts, Communication III: Crack initiation, Sov. Phys. J., 7, 17–25

    Google Scholar 

  40. Igoshev, V., I. (1997) Some critical experiments in support of the “dissolution-condensation ” model of LME, presentation at the Kammel-Gedeon CNRS-CEA Workshop “Materials for Hybrid Systems, Paris

    Google Scholar 

  41. Glickman, E., E. and Igoshev, V., I. LME as the crack kinetics phenomenon, will be published

    Google Scholar 

  42. Ashby, M. F., and Jones, D. R. (1991) Engineering Materials 1, Pergamon Press, Oxford

    Google Scholar 

  43. Ohr, S. M., (1986) Scripta Metal., 86, 1501–1505

    Article  Google Scholar 

  44. Kraft, J. M. and Mulherin J. R. (1969) Tensile-ligament instability and the growth of stress-corrosion crack in high strength alloys, Trans, of ASM, 62, 64

    Google Scholar 

  45. Glickman, E., and Nathan, M.(1999) On the kinetic mechanism of grain boundary wetting in metals, J. Appl. Phys., 85, 3185–3191

    Article  CAS  Google Scholar 

  46. Glickman, E., work in progress

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Glickman, E.E. (2000). Mechanism of Liquid Metal Embrittlement by Simple Experiments: From Atomistics to Life-Time. In: Lépinoux, J., Mazière, D., Pontikis, V., Saada, G. (eds) Multiscale Phenomena in Plasticity: From Experiments to Phenomenology, Modelling and Materials Engineering. NATO Science Series, vol 367. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4048-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4048-5_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6252-4

  • Online ISBN: 978-94-011-4048-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics