Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 367))

Abstract

This paper outlines current approaches to modelling fracture and the brittle-ductile transition both in simple materials and in microstructurally complex materials such as steel. The models cover a very wide range of length and time scales, from a few hundreds of atoms and a few hundred picoseconds, to millimetres or more and minutes or hours. The problem and the challenge is to link the most useful features of models at the different scales. The paper describes dislocation based (“mesoscopic”) models that reproduce the rise in cleavage K with temperature of simple single crystals. Such models can take into account experimentally-determined critical variables such as the spacing and activation characteristics of dislocation sources. However, they need as input information, such as Klc and dislocation mobility as a function of stress and temperature, that cannot at present be predicted (e.g. by atomistic modelling) and must be experimentally determined. In real engineering materials, archetypically steels, the fracture mechanisms are more complex than in the single crystals, even in the low-temperature “cleavage” regime. Failure initiates not from the main crack, but at microcracks associated with brittle particles near the main crack tip. This presents a further challenge to modelling the BDT. Current models for steels are based on Finite Element Modelling of the plastic zone, with a “stress at a particle” failure criterion for determining the BDT curve. They are often statistically-based. The models can be made to fit experimental results, but the “best fit” microstructural parameters in such models (e.g. particle densities and fracture stresses) bear little relation to the real microstructures. This paper outlines an extension to the dislocation-based approach, to model the cleavage portion of the BDT curve in steels, which promises to give justification for the parameters in the statistical models, and possibly to predict BDT behaviour directly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roberts, S.G. (1996) Modelling the brittle to ductile transition in single crystals, in “Computer Simulation in Materials Science — nano / meso / macroscopic space and time scales”, edited by H.O. Kirchner, L.P. Kubin & V. Pontikis, NATO ASI series, series E, 308, Kluwer Academic Publishers, 409–434.

    Google Scholar 

  2. Brede. M. and Haasen, P. (1988) The brittle-to-ductile transition in doped silicon as a model substance, Acta Metall. 36, 2003–2018.

    Article  CAS  Google Scholar 

  3. St. John, C. (1975) The brittle-ductile transition in pre-cracked silicon crystals, Phil Mag., 32, 1193–1212.

    Article  Google Scholar 

  4. George, A. and Michot, G. (1993) Dislocation loops at crack tip — nucleation and growth — an experimental study in silicon, Mater. Sci. and Eng. A164, 118–134.

    Article  CAS  Google Scholar 

  5. Samuels, J. and Roberts, S.G. (1989) The brittle-ductile transition in silicon. I. experiments, Proc. R. Soc.Lond. A 421, 1–23.

    Google Scholar 

  6. Kim, H.S. and Roberts, S.G. (1994) The brittle-ductile transition and dislocation mobility in sapphire, J. Am. Ceram. Soc. 77, 3099–3104.

    Article  CAS  Google Scholar 

  7. Serbena, F.C. and Roberts, S.G. (1994) The brittle-ductile transition in germanium, Acta Metall. Mater. 42, 2505–2510.

    Article  CAS  Google Scholar 

  8. Booth, A.S. and Roberts, S.G. (1994) Warm-prestressing and slow crack growth in MgO, J. Am Ceram. Soc, 77, 1457–1466.

    Article  Google Scholar 

  9. Marrow, T.J., Roberts, S.G. and Pearce-Higgins, A.K. (1994) The brittle-ductile transition in cubic stabilised zirconia, J. Euro. Ceram. Soc. 14, 447–453.

    Article  CAS  Google Scholar 

  10. Booth, A.S., Ellis, M, Roberts, S.G. and Hirsch, P.B. (1993) Dislocation-controlled stable crack growth in Mo and MgO, Mat. Sci. and Eng. A164, 270–274.

    CAS  Google Scholar 

  11. Ellis, M. (1991) The brittle-ductile transition in b.c.c. metals, D.Phil thesis, University of Oxford.

    Google Scholar 

  12. Hull, D., Beardmore, P. and Valintine, A.P. (1965) Crack propagation in single crystals of tungsten, Phil. Mag. 14, 1021–1041.

    Article  Google Scholar 

  13. Gumbsch, P., Reidle, J., Hartmaier, A. and Fischmeister, H.F. (1998) Controlling factors for the brittleto-ductile transition in tungsten single crystals, Science 282, 1293–1295.

    Article  CAS  Google Scholar 

  14. Booth, A.S. and Roberts, S.G. (1997) The brittle-ductile transition in μ-TiAl single crystals, Acta Mater. 45, 1017–1023.

    Article  Google Scholar 

  15. Serbena, F.C. (1995) The brittle-ductile transition in NiAl, D.Phil thesis, University of Oxford.

    Google Scholar 

  16. Bergmann, G. and Vehoff, H. (1995) Effect of environment on the brittle to ductile transition of precracked NiAl single and polycrystals, Mat. Sci. & Eng. A. 193, 309–315.

    Article  Google Scholar 

  17. Warren, P.D. (1989) The brittle-ductile transition in silicon — the influence of pre-existing dislocation arrangements, Scripta Metall. 23, 637–642.

    Article  CAS  Google Scholar 

  18. Kantha, M., Pope, D.P. and Vitek, V. (1994) The brittle-to-ductile transition-I: a cooperative dislocation generation instability, Scripta Metall. Mater. 31, 1349–1354.

    Article  Google Scholar 

  19. Burns, S.J. (1986) Crack tip dislocation nucleation observations in bulk specimens, Scripta Metall. 20, 1489–1494.

    Article  CAS  Google Scholar 

  20. Higashida, K., Narita, N., Onodera, R., Minato, S., and Okazaki, S. (1997) HVEM observations of dislocation structures near a crack tip in MgO crystals, Mat. Sci. & Eng. A. 237, 72–78.

    Article  Google Scholar 

  21. Azzouzi, H., Michot, G. and George, A. (1991) In situ synchrotron X-ray topography observation of crack tip plasticity and the brittle-ductile transition in silicon, in D.G. Brandon, R. Chaim and A. Rosen (eds) Proc. 9th Conf. on Strength of Metals and Alloys, Freund, London, pp. 783–791.

    Google Scholar 

  22. Hartmaier, A. and Gumbsch, P. (1998) Mesoscopic simulation of dislocation activity at crack tips, MRS Proceedings 539, 233–244.

    Article  Google Scholar 

  23. Hirsch, P.B. and Roberts, S.G. (1997) Modelling plastic zones and the brittle-ductile transition, Phil. Trans. Roy. Soc. Lond. A355, 1991–2001.

    Google Scholar 

  24. Rice, J.R. and Thomson, R. (1973) Ductile versus brittle behaviour of crystals, Phil. Mag. 29, 73–97.

    Article  Google Scholar 

  25. Schoeck, G., (1996) The formation of dislocation rings on a crack front, Phil. Mag. A74, 419–430

    Google Scholar 

  26. Rice, J.R. (1992) Dislocation nucleation from a crack tip — an analysis based on the Peierls concept, J. Meck Phys. Solids 40, 239–271.

    Article  CAS  Google Scholar 

  27. Rice, J.R. and Beltz, G.E. (1994) The activation-energy for dislocation nucleation at a crack, J. Mech. Phys. Solids 42, 333–360.

    Article  CAS  Google Scholar 

  28. Panova, J. and Farkas, D. (1998) Atomistic simulation of fracture in TiAl, Metall Mater. Trans. A 29, 951–955.

    Google Scholar 

  29. Zhou, S.J. and Thomson, R., (1991) Dislocation emission at ledges on cracks, J. Mater. Res. 6, 639–653.

    Article  Google Scholar 

  30. Zhou, S.J., Beazley, D.M., Lomdahl, P.S. and Holian, B.L. (1997) Large-scale molecular dynamics simulations of three-dimensional ductile failure, Phys. Rev. Letts 78, 479–482.

    Article  CAS  Google Scholar 

  31. Valladares, A, White, J.A. and Sutton, A.P. (1998) First principles simulations of the structure, formation, and migration energies of kinks on the 90° partial dislocation in silicon, Phys. Rev. Letts 81, 4903–4906

    Article  CAS  Google Scholar 

  32. Fineberg, J., and Marder, M. (1999) Instability in dynamic fracture, Phys. Reports — Review Section of Physics Letters 313, 2–108

    Google Scholar 

  33. Miller, R., Tadmor, E.B., Phillips, R. and Ortiz, M. (1998), Quasicontinuum simulation of fracture at the atomic scale, Modell. & Simul. Mat. Sci. Eng. 6, 607–638.

    Article  CAS  Google Scholar 

  34. Hirsch, P.B., Roberts, S.G. and Samuels, J. (1989) The brittle-ductile transition in silicon. II. interpretation, Proc. R. Soc. Lond. A421, 25–53.

    Google Scholar 

  35. Roberts, S.G., Kim, H.S. and Hirsch, P.B. (1991) The brittle-ductile transition and dislocation mobility in silicon and sapphire, Proc. Ninth Intll. Conf. on the Strength of Metals and Alloys, pp. 317–324.

    Google Scholar 

  36. Devincre, B and Roberts, S.G. (1996) 3-D simulation of dislocation-crack interactions in B.C.C. metals at the mesoscopic scale, Acta Metall, et Mater. 44, 2891–2900.

    CAS  Google Scholar 

  37. Booth, A.S., Cosgrave, M. and Roberts, S.G. (1991) The warm-prestressing effect in silicon, Acta Metall. Mater. 39, 191–197.

    Article  CAS  Google Scholar 

  38. Wilkinson, A.J. and Roberts, S.G. (1996) A dislocation model for the two critical stress intensities required for threshold fatigue crack propagation, Scripta Mater. 35, 1365–1371.

    Article  CAS  Google Scholar 

  39. Wilkinson, A.J, Roberts, S.G. and Hirsch, P.B. (1998) Modelling the threshold conditions for propagation of stage I fatigue cracks, Acta Mater. 46, 379–390.

    Article  CAS  Google Scholar 

  40. Riemelmoser F.O. and Pippan, R. (1997) Investigation of a growing fatigue crack by means of a discrete dislocation model, Mat. Sci. & Eng. A. 234, 135–137.

    Article  Google Scholar 

  41. Roberts, S.G. and Wilkinson, A.J., unpublished work.

    Google Scholar 

  42. Tweed, J.H. and Knott, J.F. (1987) Micromechanisms of failure in C-Mn weld metals, Acta. Metall. 35, 1401–1414.

    Article  CAS  Google Scholar 

  43. Knott, J.F. (1973) Fundamentals of fracture mechanics. London: Butterworths.

    Google Scholar 

  44. Ritchie, R.O., Knott, J.F. and Rice, J.R. (1973) On the relationship between critical tensile stress and fracture toughness in mild steel, J. Mech. Phys. Solids 21, 395–410.

    Article  CAS  Google Scholar 

  45. Rice, J.R. and Rosengren, G.F. (1968) Plane strain deformation near a crack tip in a power-law hardening material, J. Mech. Phys. Solids 16, 1–12.

    Article  Google Scholar 

  46. Bowen, P, Druce, S.G. and Knott, J.F. (1987) Micromechanical modeling of fracture-toughness, Acta Metall 35, 1735–1746.

    Article  CAS  Google Scholar 

  47. Beremin, F.M. (1983) A local criterion for fracture of a nuclear pressure vessel steel, Met. Trans. A., 14 2277–2287.

    Article  Google Scholar 

  48. Wallin, K. (1993) Macroscopic nature of brittle-fracture, J. de Physique IV 3, C7 575–584.

    Article  Google Scholar 

  49. Eripret, C., Lidbury, D.P.G., Sherry, A. and Howard, I. (1996) Prediction of fracture in the transition regime: application to an A533B pressure vessel steel, J. de Physique IV C6, 315–323

    Google Scholar 

  50. Levy, N., Marcal, P.V., Ostergren, W.J. and Rice, J.R. (1971) Small scale yielding near a crack in plane strain: a finite element analysis. Int. Journ. Fracture Mechanics 7, 143–156.

    Google Scholar 

  51. Rice, J.R. and Johnson, M.A. (1970) in Inelastic Behaviour of Solids (ed. M.F. Kanninen et al., New-York: Mc Graw-Hill.) p 641.

    Google Scholar 

  52. Hutchinson, J.W. 1948. Plastic stress and strain fields at a crack tip. J. Meck Phys. Solids 16, 337–347.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Roberts, S.G. (2000). Modelling Brittle-Ductile Transitions. In: Lépinoux, J., Mazière, D., Pontikis, V., Saada, G. (eds) Multiscale Phenomena in Plasticity: From Experiments to Phenomenology, Modelling and Materials Engineering. NATO Science Series, vol 367. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4048-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4048-5_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6252-4

  • Online ISBN: 978-94-011-4048-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics