Skip to main content

Use and Limitations of the Shell Model in Calculations on Perovskites

  • Chapter
Book cover Defects and Surface-Induced Effects in Advanced Perovskites

Part of the book series: NATO Science Series ((ASHT,volume 77))

  • 674 Accesses

Abstract

A conventional shell model (SM) fitted to static lattice properties and just one phonon frequency, namely that of the transverse Raman frequency at the R point, has been used to calculate the phonon dispersion in cubic strontium titanate at 298 K along principal high-symmetry directions in the Brillouin zone. The agreement between these calculated data and experimental results from neutron scattering is fully comparable with that of SMs actually fitted to experimental neutron data. The usual SM cannot account for the strong temperature dependence of the soft-mode frequency and the static permittivity, but it is shown that this temperature dependence can be accounted for by small continuous variations in just two of the SM parameters. While purely phenomenological at present, these variations point to the strong dependence of metal-oxygen bonding on lattice constant.

Similar calculations for potassium niobate result in an excellent fit to the temperature dependence of the frequency of the soft TO mode. This SM has been used to calculate atomic displacements around O, Nb and K vacancies in KNbO3, with results in good agreement with INDO calculations by Kotomin and Eglitis. Ab initio HartreeFock calculations for KNbO3 predict O and K displacements in agreement with the SM and INDO results, but rather smaller Nb displacements. Charge-density plots confirm substantial electron density between O and Nb atoms due to overlap of O 2p with Nb eg orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Günter P. and Huignard J-P. (Eds.) Phororefractive Materials and Their Applications (Springer Verlag. Berlin, 1998).

    Google Scholar 

  2. Eglitis RI., Postnikov AV. and Borstel G., Semiempirical Hartree-Fork calculations for KNbOr Phys. Rev., B54, 2921 (1996).

    ADS  Google Scholar 

  3. Cowley R.A., Lattice dynamics and phase transitions of strontium titanate, Phys. Rev., 134, A981 (1964).

    Article  ADS  Google Scholar 

  4. Stirling W.G., Neutron inelastic scattering study of the lattice dynamics of strontium titanate: harmonic models, J. Phys. C, 5, 2711 (1972).

    Article  ADS  Google Scholar 

  5. Miller RC., Spitzer W.G. and Kleinman D.A., Dielectric dispersion in single-crystal BaTiOr, SrTiOs, and TiO2, Butt. Am. Phys. Soc., 7, 280 (1962).

    Google Scholar 

  6. Barker AS. and Tinkham M., Far-infrared ferroelectric vibration mode in SrTiO3, Phys. Rev., 125, 1527 (1962).

    Article  ADS  Google Scholar 

  7. Lytle F.W., X-ray diffractometry and low-temperature phase transformations of strontium titanate, J. Appt. Phys., 35, 2212 (1964).

    Article  ADS  Google Scholar 

  8. Unoki H. and Sakudo T., Electron spin resonance of Fe+3 in SrTiO3 with special reference to the 110 K phase transition, J. Phys. Soc. Japan, 23, 546 (1967).

    Article  ADS  Google Scholar 

  9. Fleury P.A., Scott J.F. and Warlock J.M., Soft phonon modes and the 110 K phase transition in SrTiO3, Phys. Rev. Lett., 21. 16 (1968).

    Article  ADS  Google Scholar 

  10. Shirane G. and Yamada Y., Lattice-dynamical study of the 110 K phase transition in SrTiO3, Phys. Rev., 177, 858 (1969).

    Article  ADS  Google Scholar 

  11. Weaver H.E., Dielectric properties of single crystals of SrTiO3 at low temperatures, J. Phys. Chem. Solids, 11, 274 (1959).

    Article  ADS  Google Scholar 

  12. Bell R.O. and Rupprecht G., Elastic constants of strontium titanate, Phys. Rev., 129, 90 (1961).

    Article  ADS  Google Scholar 

  13. Levin S.B., Field N.J., Plock F.M. and Merker L, Some optical properties of strontium titanate crystal, J. Opt. Soc. Am., 45, 737 (1955).

    Article  ADS  Google Scholar 

  14. Crawford J.L. and Jacobs P.W.M., Phonon dispersion in strontium titanate, to be published.

    Google Scholar 

  15. Jacobs P.W.M., Calculation of point defect parameters in ionic materials, in Diffusion in Materials, ed. A.L. Laskar, Bocquet J.L, Brébec G. and Monty C. (Kluwer, Dordrecht 1990) and references therein.

    Google Scholar 

  16. Jacobs P.W.M., A temperature-dependent shell model for strontium titanate, Il Nuovo Cimento, 20 D, 1187 (1998).

    Article  Google Scholar 

  17. Migoni R., Bilz H. and Bàuerle D., Origin of Raman scattering and fen-electricity in oxidic perovskites, Phys. Rev. Lett.,37, 1155 (1976).

    Article  ADS  Google Scholar 

  18. Fontana M.D., Kugel G.E. and Carabatos C., Lattice dynamics of the cubic-tetragonal phase transition in KNbO3, J. Phys. Paris,42, C6–749 (1981).

    Article  Google Scholar 

  19. Donnerberg H. and Exner M., Derivation and application of ab initio Nb+5-O-2 short range effective pair potentials in shell-model simulations of KNbO3 and KTaO3, Phys. Rev., B 49, 3746 (1994).

    Article  ADS  Google Scholar 

  20. Reference [19], Table II, p. 3750.

    Google Scholar 

  21. Fontana M.D., Métrat G., Servoin J.L. and Gervais F., Infrared spectroscopy in KNbO3 through successive ferrelectric phase transitions, J. Phys. C, 16, 483 (198).

    Google Scholar 

  22. Yanovskii V.K., Electrical conductivity and dielectric properties of KNbO3 crystals with impurities, Soy. Phys. Solid State,22, 1284 (1980).

    Google Scholar 

  23. Jacobs P.W.M., Kotomin E.A. and Eglitis RI., Semi-empirical INDO and shell-model calculations for perovskites, Rad. Eff. Def. Solids, in the press.

    Google Scholar 

  24. Dovesi R., Saunders V.R., Roetti C., Causà M., Harrison N.M., Orlando R. and Apri E., Crystal 95 Users Manual (Theoretical Chemistry Group, University of Turin, Italy, 1996).

    Google Scholar 

  25. Dall’Alio S., Dovesi R. and Resta R., Spontaneous polarization as a Deny phase of the Hartree-Fock function: The case of KNbO3, Phys. Rev., B 56, 10105 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jacobs, P.W.M. (2000). Use and Limitations of the Shell Model in Calculations on Perovskites. In: Borstel, G., Krumins, A., Millers, D. (eds) Defects and Surface-Induced Effects in Advanced Perovskites. NATO Science Series, vol 77. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4030-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4030-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6217-3

  • Online ISBN: 978-94-011-4030-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics