Skip to main content

Wetting of Domain Walls in Perovskites

  • Chapter
  • 663 Accesses

Part of the book series: NATO Science Series ((ASHT,volume 77))

Abstract

The study of the movement of the paraelectric-ferroelectric interphase boundary in (Ba,Sr)TiO3 (BST) and Pb(Zr,Ti)O3 (PZT) perovskites with concentration change and BST in constant magnetic fields is provided in the framework of the mean-field theory. The analytical solution for the parameters of motion of the interphase boundary is applied for the calculations of the splitting of domain walls in BST with the magnetic field tuning for different concentrations of Sr. The wetting of domain walls in PZT is shown for some concentrations of Ti. The calculations are based on the experimental data for the Curie-Weiss constant and for the parameters of the Landau-Ginzburg expression for the free energy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lines, M. E. and Glass, A. M. (1977) Principles and Application of Ferroelectrics and Related Materials Clarendon Press, Oxford.

    Google Scholar 

  2. Dunaevsky, A, Krasik, Ya. E., Felsteiner, J, and Dorfman, S. (1999) Electron/ion emission from the plasma formed on the surface of ferroelectrics J. Appl. Phys. 85 8464.

    Article  ADS  Google Scholar 

  3. Robertson, J., Warren, W. L., Tuttle, B. A., Dimos, D., and Smyth, D. (1993) Shallow Pb3+ hole traps in lead zirconate titanate ferroelectrics App!. Phys. Lett63, 1519.

    Article  Google Scholar 

  4. Baude, P. F., Ye, C., and Polla, D. L. (1994) Deep level transient spectroscopy characterization of ferroelectric Pb(Zr,Ti)O3 thin films, Appl. Phys. Lett 64 2670.

    Article  ADS  Google Scholar 

  5. Whatmore, R. W., Clarke, C., and Glazer, A. M., (1978) Tricritical behaviour in PbZrxTil..O3 solid solutions J. Phys. C 11 3089.

    Article  ADS  Google Scholar 

  6. Triebwasser, S. (1959) Study of ferroelectric transitions of solid solution single crystals of KNbO3-KTaO3, Phys. Rev 114 63.

    Article  ADS  Google Scholar 

  7. Bethe, K. and Welz, F. (1971) Preparation and properties of (Ba,Sr)TiO3 single crystals Mater. Res. Bull 6, 209.

    Article  Google Scholar 

  8. Clarke, R. (1978) X-ray study of the structural phase transition in Sn.Ge1..Te, Phys. Rev. B 18 4920.

    Article  ADS  Google Scholar 

  9. Benguigui, L. and Beaucamps, Y., (1981) Tricriticality in Co-doped BaTiO3 Phys. RevB 23, 5866.

    Google Scholar 

  10. Calm, J. W. (1977) Critical point wetting, J. Chem Phys 66 3667.

    Article  ADS  Google Scholar 

  11. Widom, B. (1978) Structure of the ay interface, J. Cheyn. Phys 68 3878.

    Article  ADS  Google Scholar 

  12. Lazerowicz, J., (1981) Domain wall near a first-order phase transition: role of elastic forces, Ferroelectrics 35 219.

    Article  Google Scholar 

  13. Rado, G. T. and Folen, V. J. (1961) Observation of the magnetically induced magnetoelectric effect and evidence foe antiferromagnetic domains, Phys. Rev. Lett. 7 310.

    Google Scholar 

  14. Ascher, E., Rieder, H., Schmid, H., and Stoessel, H., (1966) Some properties of ferromagnetoelectric nickel-iodine boracite, Ni3B7O13. J. Appl. Phys 37 1404.

    Article  ADS  Google Scholar 

  15. Wagner D. and Bauerle, D., (1981) Influence of magnetic field on the paraelectric to ferroelectric phase transition in BaTiO3 Phys. Lett. A 83, 347.

    Article  ADS  Google Scholar 

  16. Lawless, W. N., Clark, C. F., and Swartz, S. L., (1982) Magnetic-field dependence of the soft-mode frequency in KTaO3 at 20K. Ferroelectric Lett 44 121.

    Article  Google Scholar 

  17. Ginzburg, V. L., (1960) Second-order phase transitions Sov. Phys. Sol. State 2, 1123.

    MathSciNet  Google Scholar 

  18. Dec, J. (1989) The phase boundary as a kink, Ferroelectrics 89, 193.

    Article  Google Scholar 

  19. Dec, J. and Yurkevich, V. E., (1990) The antiferroelectric phase boundary as a kink, Ferroelectrics 110, 77.

    Article  Google Scholar 

  20. Gordon, A., (1983) Nonlinear phenomena in kinetics of phase transitions Phy Lett 99, 329.

    Article  Google Scholar 

  21. Gordon, A., Dorfman, S., and Fuks, D., (1997) Non-equilibrium diagrams of phase growth for smart materials Phil. Mag. A 75, 1391

    Article  ADS  Google Scholar 

  22. Gordon, A., and Wyder, P., (1992) Nonlinear field-induced dynamics of interphase boundaries at some diffusionless phase transitions Phys. Rev. B 46, 5777.

    Article  ADS  Google Scholar 

  23. Guro, G. M, Ivanchik, I. I, and Kovtonyuk, N. F. (1969) BaTiO3 crystal with c-type domains in a short-circuited capacitor, Fizika Tverdogo Tel a 11 1956.

    Google Scholar 

  24. Gordon, A. and Dorfman, S., (1994) Pressure-induced kinetics of ferroelectric phase transitions, Phys. Rev. B 50,13132; (1995) Kinetics of phase transitions in solid solutions of ferroelectric perovskites Phys. Rev. B 51 9306.

    Article  ADS  Google Scholar 

  25. Gordon, A., Dorfman, S., and Wyder, P, (1995) Magnetic field response of the interphase boundary dynamics in perovskite solid solutions Phys. Rev. B 52,143.

    Article  ADS  Google Scholar 

  26. Dorfman, S., Fuks, D., Gordon, A., Postnikov, A. V., and Borstel, G. (1995) Movement of the interface boundary in KNbO3 under pressure Phys. Rev. B 52, 7135.

    Article  ADS  Google Scholar 

  27. Dorfman, S., Fuks, D., and Gordon, A. (1995) Kinetics of the first-order phase transition in Cu-Au from atomistic Landau theory Phys. Rev. B 52, 12473.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dorfman, S. (2000). Wetting of Domain Walls in Perovskites. In: Borstel, G., Krumins, A., Millers, D. (eds) Defects and Surface-Induced Effects in Advanced Perovskites. NATO Science Series, vol 77. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4030-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4030-0_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6217-3

  • Online ISBN: 978-94-011-4030-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics