Skip to main content

Towards Environmentally Friendly Chemical Processes

  • Chapter
Current Topics in Flavours and Fragrances

Abstract

Increasingly stringent environmental regulations have stimulated chemical manufacturers to develop alternative technologies that produce a minimum amount (preferably zero) of waste and avoid, as much as possible, the use of toxic and/or hazardous reagents and solvents [1–4]. Emphasis is clearly on the reduction of waste at source — primary pollution prevention — rather than incremental end-of-pipe solutions. Sustainable development and benign by design are the catch phrases that paraphrase this trend towards ‘green chemistry’ [5, 6]. Consequently, traditional concepts of process efficiency are changing from an exclusive focus on chemical yield to one that assigns economic value to eliminating waste.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sheldon, R.A. (1997) Catalysis: The key to waste minimization. J. Chem. Techol. Biotechnol., 68, 381–388.

    Article  CAS  Google Scholar 

  2. Sheldon, R. A. (1997) Catalysis and pollution prevention. Chem. Ind. (London), 12–15.

    Google Scholar 

  3. Sheldon, R.A. (1996) Selective catalytic synthesis of fine chemicals: opportunities and trends. J. Mol. Catal. A: Chemical 107, 75–83.

    Article  CAS  Google Scholar 

  4. Sheldon, R.A. (1994) Consider the environmental quotient. CHEMTECH, March, 38-47.

    Google Scholar 

  5. Anastas, P.T., Farris, C.A., Eds. (1994) Benign by Design, ACS Symp. Ser. 577, Am. Chem. Soc., Washington, DC.

    Google Scholar 

  6. Clark, J.H., Ed. (1995) Chemistry of Waste Minimization, Blackie, Glasgow.

    Google Scholar 

  7. Sheldon, R.A. (1992) Catalysis, the atom utilization concept and waste minimization. In Industrial Environmental Chemistry, Sawyer, D.T. and Martell, A.E., Eds., Plenum, New York, 99–119.

    Google Scholar 

  8. Sheldon, R.A. (1993) The role of catalysis in waste minimization. In Precision Process Technology, Weijnen, M.P.C. and Drinkenburg, A.A.H., Eds., Kluwer, Amsterdam, 125–138.

    Chapter  Google Scholar 

  9. Trost, B.M. (1995) Atom economy — a challenge for organic synthesis: homogeneous catalysis leads the way. Angew. Chem. Int. Ed. Engl., 34, 259–281.

    Article  CAS  Google Scholar 

  10. Sheldon, R.A. (1998) Organic reactions and catalysis: a marriage of convenience. Organic Reactions and Catalysis, in press.

    Google Scholar 

  11. Ratton, S. (1998) Heterogeneous catalysis in the fine chemicals industry: from dream to reality. Chem. Today, March/April, 33-37.

    Google Scholar 

  12. Yokoyama, T., Setoyama, T., Fujita, N., Nakajima, M., Maki, T. (1992) Novel direct hydrogenation of aromatic carboxylic acids to the corresponding aldehydes with zirconia catalyst. Appl. Catal. A: General, 88, 149–161.

    Article  CAS  Google Scholar 

  13. Creyghton, E.J., Ganeshie, S.D., Downing, R.S., van Bekkum, H. (1997) Stereoselective Meerwein-Ponndorf-Verley and Oppenauer reactions catalysed by zeolite BEA J. Mol. Catal. A: Chemical, 115, 457–472.

    Article  CAS  Google Scholar 

  14. Fache, F., Bethmont, V., Jaquot, L., Lemaire, M. (1996) Reductive O-and N-alkylation. Alternative catalytic methods to nucleophilic substitution. Recl. Trav. Chim. Pays-Bas, 115, 231–238.

    Article  CAS  Google Scholar 

  15. Sheldon, R.A., Kochi, J.K. (1981) Metal Catalyzed Oxidations of Organic Compounds, Academic Press, New York.

    Google Scholar 

  16. Hölderich, W.F. (1993) New reactions in various fields and production of specialty chemicals. In New Frontiers in Catalysis, Guczi, L., Solymosi, F., Tetenyi, P., Eds., Elsevier, Amsterdam 127–163.

    Chapter  Google Scholar 

  17. Roffia, P., Leofanti, G., Cesana, A., Mantegazza, M., Padovan, M., Petrini, G., Tonti, S., Gervasutti, P. (1990) Cyclohexanone ammoximation: a breakthrough in the 6-caprolactam production. Stud. Surf. Sci. Catal., 55, 43–52.

    Article  CAS  Google Scholar 

  18. Arends, I.W.C.E., Sheldon, R.A., Wallau, M., Schuchardt, U. (1997) Oxidative transformations of organic compounds mediated by redox molecular sieves. Angew. Chem. Int. Ed. Engl., 36, 1190–1211.

    Article  Google Scholar 

  19. le Bars, J., Dakka, J., Sheldon, R.A. (1996) Ammoximation of cyclohexanone and hydroxyaromatic ketones over titanium molecular sieves. Appl. Catal. A: General, 136, 69–80.

    Article  Google Scholar 

  20. Sato, H., Hirose, K., Kitamura, M., Nakamura, Y. (1989) A vapor phase Beckmann rearrangement over high-silicious ZSM-5. Stud. Surf. Sci. Catal., 49, 1213–1222.

    Article  Google Scholar 

  21. Maitlis, P.M., Haynes, A., Sunley, G.J., Howard, M.J. (1996) Methanol carbonylation revisited: thirty years on. J. Chem. Soc. Dalton Trans., 2187-2196.

    Google Scholar 

  22. Elango, V., Murphy, M.A., Smith, B.L., Davenport, K.G., Mott, G.N., Moss, G.L. (1991) Process for producing ibuprofen. US Pat. 4981995 to Hoechst Celanese Corp.

    Google Scholar 

  23. Roessler, F. (1996) Catalysis in the industrial production of Pharmaceuticals and fine chemicals. Chimia, 50, 106–109.

    CAS  Google Scholar 

  24. Beller, M., Eckert, M., Vollmüller, F., Bogdanovic, S., Geissler, H. (1997) Palladium-catalyzed amidocarbonylation — A new, efficient synthesis of N-acyl amino acids. Angew. Chem. Int. Ed. Engl., 36, 1494–1496.

    Article  CAS  Google Scholar 

  25. Heck, R.F. (1985) Palladium Reagents in Organic Syntheses, Academic Press, New York.

    Google Scholar 

  26. Tsuji, J. (1995) Palladium Reagents and Catalysts: Innovations in Organic Synthesis, Wiley, New York.

    Google Scholar 

  27. Stephan, M.S., Teunissen, AJ.J.M., Verzijl, G.K.M., de Vries, J.G. (1998) Heck reactions without salt formation: aromatic carboxylic anhydrides as arylating agents. Angew. Chem. Int. Ed. Engl., 37, 662–664.

    Article  CAS  Google Scholar 

  28. Downing, R.S., van Bekkum, H., Sheldon, R.A. (1997) Zeolites and related materials for the solid-acid catalyzed production of fine chemicals: a view from Delft. Cattech, 2, 95–109.

    Google Scholar 

  29. Singh, A.P., Pandey, A.K. (1997) Acetylation of benzene to acetophenone over zeolite catalysts. J. Mol. Catal. A: Chemical, 123, 141–147.

    Article  CAS  Google Scholar 

  30. Gunnewegh, E.A., Hoefnagel, A.J., Downing, R.S., van Bekkum, H. (1996) Environmentally friendly synthesis of coumarin derivatives employing heterogeneous catalysis. Recl. Trav. Chim. Pays-Bas, 115, 226–230.

    Article  CAS  Google Scholar 

  31. Elings, J.A., Lempers, H.E.B., Sheldon, R.A. (1997) Zeolite-catalysed rearrangement of isophorone oxide. Stud. Surf. Sci. Catal., 105, 1165–1172.

    Article  Google Scholar 

  32. Liebens, A.T., Mahaim, C., Hölderich, W.F. (1977) Selective isomerisation of α-pinene oxide with heterogeneous catalysts. Stud. Surf. Sci. Catal., 108, 587–594.

    Article  Google Scholar 

  33. Elings, J.A., Downing, R.S., Sheldon, R.A. (1995) Zeolite-catalysed Claisen rearrangement of allyl aryl ethers. Stud. Surf. Sci. Catal., 94, 487–494.

    Article  CAS  Google Scholar 

  34. Subba Rao, Y.V., De Vos, D.E., Jacobs, P.A. (1997) Silica-supported 1, 5, 7-triazabicyclodecene as a catalyst for Michael additions. In Supported Reagents and Catalysts in Chemistry, Hodnett, B.K., Kybett, A.P., Clark, J.H., Smith, K., Eds., The Royal Society of Chemistry, Cambridge, 110–115.

    Google Scholar 

  35. Papadogianakis, G., Sheldon, R.A. (1997) Catalytic Conversions in Water. An Environmentally Benign Concept for Heterogenisation of Homogeneous Catalysis. In Catalysis, Vol. 13, Specialist Periodical Report, Royal Society of Chemistry, Cambridge, 114–193.

    Chapter  Google Scholar 

  36. Papadogianakis, G., Sheldon, R.A. (1996) Catalytic conversions in water: environmentally attractive processes employing water soluble transition metal complexes. New. J. Chem., 20, 175–185.

    CAS  Google Scholar 

  37. Cornils, B., Herrmann, W.A., Eds. (1998) Aqueous-Phase Organometallic Catalysis. Concepts and Applications, Wiley-VCH, Weinheim.

    Google Scholar 

  38. Grieco, P.A., Ed. (1998) Organic Synthesis in Water, Blackie, Glasgow.

    Google Scholar 

  39. Comils, B., Wiebus, E. (1996) Virtually no environmental impact: the biphasic oxo process. Recl. Trav. Chim. Pays-Bas, 115, 211–215.

    Google Scholar 

  40. Mercier, C., Chabardes, P. (1994) Organometallic chemistry in industrial vitamin A and vitamin E synthesis. Pure Appl. Chem., 66, 1509–1518.

    Article  CAS  Google Scholar 

  41. Papadogianakis, G., Maat, L., Sheldon, R.A. (1997) Catalytic conversions in water. Part 4. Carbonylation of 5-hydroxymethylfurfural (HMF) and benzyl alcohol catalysed by palladium trisulfonated triphenylphosphine complexes. J. Mol. Catal. A: Chemical, 116, 179–190.

    Article  CAS  Google Scholar 

  42. Papadogianakis, G., Maat, L., Sheldon, R.A. (1997) Catalytic conversions in water: Part 5. Carbonylation of 1-(4-isobutylphenyl)ethanol to ibuprofen catalysed by water-soluble palladium-phosphine complexes in a two-phase system, J. Chem. Technol. Biotechnol., 70, 83–91.

    Article  CAS  Google Scholar 

  43. Papadogianakis, G., Verspui, G., Maat, L., Sheldon, R.A. (1997) Catalytic conversions in water. Part 6. A novel biphasic hydrocarboxylation of olefins catalyzed by palladium TPPTS complexes (TPPTS = P(C6H4-m-SO3Na)3). Catal. Lett., 47, 43–46.

    Article  CAS  Google Scholar 

  44. Tilloy, S., Monflier, E., Bertoux, F., Castagnet, Y., Mortreux, A. (1997) A new fruitful development in biphasic catalysis: the palladium-catalyzed hydrocarboxylation of alkenes. New. J. Chem., 21, 529–531.

    CAS  Google Scholar 

  45. Horvath, I.T., Rabat J. (1994) Facile catalyst separation without water fluorous biphase hydroformylation of olefins. Science, 266, 72–75.

    Article  CAS  Google Scholar 

  46. Hitzler, M.G., Smail, F.R., Ross, S.K., Poliakoff, M. (1998) Selective catalytic hydrogenation of organic compounds in supercritical fluids as a continuous process. Org. Proc. Res. Dev., 2, 137–146.

    Article  CAS  Google Scholar 

  47. Seddon, K.R. (1997) Ionic liquids for clean technology. J. Chem. Technol. Biotechnol., 68, 347–356.

    Article  Google Scholar 

  48. Chauvin, Y., Olivier-Bourbigou, H.O. (1995) Non aqueous ionic liquids as reaction solvent CHEMTECH, September, 26-30.

    Google Scholar 

  49. Bruggink, A., Roos, E.C., de Vroom, E. (1998) Penicillin acylase in the industrial production of β-lactam antibiotics. Org. Proc. Res. Dev., 2, 128–133.

    Article  CAS  Google Scholar 

  50. Kiener, A. (1995) Biosynthesis of functionalized aromatic N-heterocycles. CHEMTECH, September, 31-35.

    Google Scholar 

  51. Sheldon, R.A. (1993) Chirotechnology: the Industrial Synthesis of Optically Active Compounds, Marcel Dekker, New York.

    Google Scholar 

  52. Akutagawa, S. (1992) A Practical Synthesis of (-)-Menthol with the Rh-BEMAP Catalyst In Chirality in Industry, Collins, A.N., Sheldrake, G.N., Crosby, J., Eds., Wiley, New York, 313–323.

    Google Scholar 

  53. Kumoboyashi, H. (1996) Industrial application of asymmetric reactions catalyzed by BINAP-metal complexes. Recl. Trav. Chim. Pays-Bas, 115, 201–210.

    Article  Google Scholar 

  54. Blaser, H.-U., Spindler, F. (1998) Enantioselective catalysis for agrochemicals. The case histories of (S)-metolachlor, (R)-metalaxyl and clozylcan. Topics in Catalysis, 5, 275–284.

    Google Scholar 

  55. Davey, P.N., Richardson, C.D., Newman, C.P., Hart, B.R. (1997) Transesterification process for the preparation of dihydromyrcenol and myrcenol. Eur. Pat. Appl. 0784043 A1 to Quest International.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sheldon, R.A. (1999). Towards Environmentally Friendly Chemical Processes. In: Swift, K.A.D. (eds) Current Topics in Flavours and Fragrances. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4022-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4022-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5775-2

  • Online ISBN: 978-94-011-4022-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics