Skip to main content

Microbial Communities in Oil Fields

  • Chapter
Applied Microbial Systematics

Abstract

It is generally thought that oil is formed from organic material of biogenic origin. A small fraction (<1%) of organic debris of plants, algae and microorganisms is incorporated in aquatic sediments. Burial and downward movement of these sediments over geological time causes temperatures to rise and leads to the formation of kerogen from humic and fulvic acids (Philp, 1986). Oil is formed from these precursors when temperatures of 100 to 200°C are reached during continued downward movement. Further temperature increases may lead to the demise of the newly formed oil by gasification. However, lateral and upward movement through cracks and fissures driven by high resident pressures may cause oil and gas in source rock to migrate and accumulate under sediment (rock) layers of low permeability (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkins, J.P., Cornell, L.A. & Tanner, R.S. (1992a). Microbial composition of carbonate petroleum reservoir fluids. Geomicrobiology Journal 10, 87–97.

    Article  Google Scholar 

  • Adkins, J.P., Tanner, R.S., Udegbunam, E.O., Mclnerney, M.J. & Knapp, R.M. (1992b). Microbially enhanced oil recovery from unconsolidated limestone cores. Geomicrobiology Journal 10, 77–86.

    Article  CAS  Google Scholar 

  • Aeckersberg, F., Bak, F. & Widdel, F. (1991). Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Archives of Microbiology 156, 5–14.

    Article  CAS  Google Scholar 

  • Beller, H.R., Spormann, A., Sharma, P.K., Cole, J.R. & Reinhard, R. (1996). Isolation and characterization of a novel toluene-degrading sulfate-reducing bacterium. Applied and Environmental Microbiology 62, 1188–1196.

    PubMed  CAS  Google Scholar 

  • Bhupathiraju, V.K., Mclnerney, M.J. & Knapp, R.M. (1993). Pretest studies for a microbially enhanced oil recovery field pilot in a hypersaline oil reservoir. Geomicrobiological Journal 11, 19–34.

    Article  Google Scholar 

  • Bryant, R.D., Jansen, W., Boivin, J., Laishley, E.J. & Costerton, J.W. (1991). Effect of hydrogenase and mixed sulfate-reducing bacterial populations on the corrosion of steel. Applied and Environmental Microbiology 57, 2804–2809.

    PubMed  CAS  Google Scholar 

  • Caumette, P., Cohen, Y. & Matheron, R. (1991). Isolation and characterization of Desulfovibrio halophilus sp. nov., a halophilic sulfate-reducing bacterium isolated from Solar Lake (Sinai). Systematic and Applied Microbiology 14, 33–38.

    Article  Google Scholar 

  • Cord-Ruwisch, R. & Widdel, F. (1986). Corroding iron as a hydrogen source for sulphate reduction in growing cultures of sulphate-reducing bacteria. Applied Microbiology and Biotechnology 25, 169–174.

    Article  CAS  Google Scholar 

  • Cord-Ruwisch, R., Kleinitz, W. & Widdel, F. (1987). Sulfate-reducing bacteria and their activities in oil production. Journal of Petroleum Technology 39, 97–106.

    Article  CAS  Google Scholar 

  • Eden, B., Laycock, P.J. & Fielder, M. (1993). Oilfield reservoir souring, Health and Safety Executive-Offshore Technology Report. ISBN 0717606376, pp. 1-85.

    Google Scholar 

  • Fredrickson, J.K. & Phelps, T.J. (1997). Subsurface drilling and sampling. In Manual of Environmental Microbiology, 1st edn. pp. 523–540. Edited by C. J. Hurst, G. R. Knudsen, M. J. Mclnerney, L. D. Stetzenbach & M. V. Walter. ASM Press: Washington D.C.

    Google Scholar 

  • Grassia, G.S., McLean, K.M., Glenat, P., Bauld, J. & Sheehy, A.J. (1996). A systematic survey for thermophilic fermentative bacteria in high temperature petroleum reservoirs. FEMS Microbiology Ecology 21, 47–58.

    Article  CAS  Google Scholar 

  • Hamilton, W.A. (1985). Sulphate-reducing bacteria and anaerobic corrosion. Annual Review of Microbiology 39, 195–217.

    Article  PubMed  CAS  Google Scholar 

  • Herbert, B.N., Allison, P.W., Hardy, J.A., King, R.A., Sanders, P.F. & Stott, J. (1987). Review of current practices for monitoring bacterial growth in oilfield systems. In document No 001/87, Corrosion Control Engineering Joint Venture and NACE pp 1-16, Birmingham.

    Google Scholar 

  • Hermann, M., Vandecasteele, J.-P. & Ballerini, D. (1992). Anaerobic microflora of oil reservoirs. Microbiological characterization of samples from some production wells. In Bacterial Gas, pp. 223–234. Edited by R. Viually. Paris: Editions Technip.

    Google Scholar 

  • Huber, R., Stoffers, P., Cheminee, J.L., Richnow, H.H. & Stetter, K.O. (1990). Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount. Nature 345, 179–182.

    Article  Google Scholar 

  • Jenneman, G.E., Mclnerney, M.J. & Knapp, R.M. (1986). Effect of nitrate on biogenic sulfide production. Applied and Environmental Microbiology 51, 1205–1211.

    PubMed  CAS  Google Scholar 

  • Jenneman, G.E., Wright, M. & Gevertz, D. (1997). Sulfide bioscavenging of sour produced water by natural microbial populations. In Proceedings of the 3rd International Petroleum Environmental Conference, September 24 to 27, 1996, Albuquerque, NM.

    Google Scholar 

  • Karkhoff-Schweizer, R.R., Huber, D.P.W. & Voordouw, G. (1995). Conservation of genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PC.R. Applied and Environmental Microbiology 61, 290–296.

    PubMed  CAS  Google Scholar 

  • Krumholtz, L.R., McKinley, J.P., Ulrich, G.A. & Suflita, J.M. (1997). Confined subsurface microbial communities in Cretaceous rock. Nature 386, 64–66.

    Article  Google Scholar 

  • L’Haridon, S.L., Reysenbach, A.-L., Glenat, P., Prieur, D. & Jeanthon, C. (1995). Hot subterranean biosphere in a continental oil reservoir. Nature 377, 223–224.

    Article  Google Scholar 

  • Magot, M., Caumette, P., Desperrier, J.M., Matheron, R., Dauga, C., Grimont, F. & Carreau, L. (1992). Desulfovibrio longus sp. nov., a sulfate-reducing bacterium isolated from an oil-producing well. International Journal of Systematic Bacteriology 42, 398–402.

    Article  PubMed  CAS  Google Scholar 

  • Mclnerney, M.J. & Sublette, K.L. (1997). Petroleum microbiology: Biofouling, souring, and improved oil recovery. In Manual of Environmental Microbiology, 1st edn., pp. 600–606. Edited by C.J. Hurst, G.R. Knudsen, M.J. Mclnerney, L.D. Stetzenbach & M.V. Walter. Washington D.C.: ASM Press.

    Google Scholar 

  • Odom, J.M., Jessie, K., Knodel, E. & Emptage, M. (1991). Immunological cross-reactivities of adenosine-5’-phosphosulfate reductases from sulfate-reducing and sulfide-oxidizing bacteria. Applied and Environmental Microbiology 57, 727–733.

    PubMed  CAS  Google Scholar 

  • Philp, R.P. (1986). Geochemistry in search of oil. Chemistry and Engineering News, February 10, 28–43.

    Article  Google Scholar 

  • Rabus, R., Nordhaus, R., Ludwig, W. & Widdel, F. (1993). Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Applied and Environmental Microbiology 59, 1444–1451.

    PubMed  CAS  Google Scholar 

  • Rabus, R., Fukui, M., Wilkes, H. & Widdel, F. (1996). Degradative capacities and 16S rRNA-targeted whole cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil. Applied and Environmental Microbiology 62, 3605–3613.

    PubMed  CAS  Google Scholar 

  • Raiders, R.A., Knapp, R.M. & Mclnerney, M.J. (1989). Microbial selective plugging and enhanced oil recovery. Journal of Industrial Microbiology 4, 215–230.

    Article  CAS  Google Scholar 

  • Reinsel, M.A., Sears, J.T., Stewart, P.S. & Mclnerney, M.J. (1996). Control of microbiological souring by nitrate, nitrite or glutaraldehyde injection in a sandstone column. Journal of Industrial Microbiology 17, 128–136.

    Article  CAS  Google Scholar 

  • Rosnes, J.T., Torsvik, T. & Lien, T. (1991). Spore-forming thermophilic sulfate-reducing bacteria isolated from North Sea oil field waters. Applied and Environmental Microbiology 57, 2302–2307.

    PubMed  CAS  Google Scholar 

  • Rueter, R., Rabus, R., Wilkes, H., Aeckersberg, F., Rainey, F.A., Jannasch, H.W. & Widdel, F. (1994). Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372, 455–458.

    Article  PubMed  CAS  Google Scholar 

  • Shock, E.L. (1988). Organic acid metastability in sedimentary basins. Geology 16, 886–890.

    Article  CAS  Google Scholar 

  • Stetter, K.O., Lauerer, G., Thomm, M. & Neuner, A. (1987). Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science 236, 822–824.

    Article  PubMed  CAS  Google Scholar 

  • Stetter, K.O., Huber, R., Blöchl, E., Kurr, M., Eden, R.D., Fielder, M., Cash, H. & Vance, I. (1993). Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365, 743–745.

    Article  Google Scholar 

  • Stevens, T.O. & McKinley, J.P. (1995). Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270, 450–454.

    Article  CAS  Google Scholar 

  • Sublette, K.L., Mclnerney, M.J., Montgomery, A.D. & Bhupathiraju, V. (1994). Microbial oxidation of Sulfides by Thiobacillus denitrificans for treatment of sour water and sour gases. In Environmental Geochemistry and Sulfide Oxidation, pp. 68–78. Edited by C.N. Alpers and D.W. Blowes. Washington D.C.: American Chemical Society.

    Google Scholar 

  • Tardy-Jacquenod, C., Caumette, P., Matheron, R., Lanau, C., Arnauld, O. & Magot, M. (1996). Characterization of sulfate-reducing bacteria isolated from oil-field waters. Canadian Journal of Microbiology 42, 259–266.

    Article  PubMed  CAS  Google Scholar 

  • Telang, A.J., Ebert, S., Foght, J.M., Westlake, D.W.S., Jenneman, G.E., Gevertz, D. & Voordouw, G. (1997). Effect of nitrate on the microbial community in an oil field as monitored by reverse sample genome probing. Applied and Environmental Microbiology 63, 1785–1797.

    PubMed  CAS  Google Scholar 

  • Voordouw, G., Niviere, V., Ferris, F.G., Fedorak, P.M. & Westlake, D.W.S. (1990). The distribution of hydrogenase genes in Desulfovibrio and their use in identification of species from the oil field environment. Applied and Environmental Microbiology 56, 3748–3754.

    PubMed  CAS  Google Scholar 

  • Voordouw, G., Voordouw, J.K., Karkhoff-Schweizer, R.R., Fedorak, P.M. & Westlake, D.W.S. (1991). Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples. Applied and Environmental Microbiology 57, 3070–3078.

    PubMed  CAS  Google Scholar 

  • Voordouw, G., Voordouw, J.K., Jack, T.R., Foght, J., Fedorak, P.M. & Westlake, D.W.S. (1992). Identification of distinct communities of sulfate-reducing bacteria in oil fields by reverse sample genome probing. Applied and Environmental Microbiology 58, 3542–3552.

    PubMed  CAS  Google Scholar 

  • Voordouw, G., Shen, Y., Harrington, C.S., Telang, A.J., Jack, T.R. & Westlake, D.W.S. (1993). Quantitative reverse sample genome probing of microbial communities and its application to oil field production waters. Applied and Environmental Microbiology 59, 4101–4114.

    PubMed  CAS  Google Scholar 

  • Voordouw, G., Armstrong, S.M., Reimer, M.F., Fouts, B., Telang, A.J., Shen, Y. & Gevertz, D. (1996). Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Applied and Environmental Microbiology 62, 1623–1629.

    PubMed  CAS  Google Scholar 

  • Widdel, F. & Bak, F. (1992). Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, 2nd edn., pp. 3352–3378. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Voordouw, G. (2000). Microbial Communities in Oil Fields. In: Priest, F.G., Goodfellow, M. (eds) Applied Microbial Systematics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4020-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4020-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6518-1

  • Online ISBN: 978-94-011-4020-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics