Skip to main content

A Fractionation Model for Hydrous Calc-Alkaline Plutons and the Heat Budget During Fractional Crystallisation and Assimilation

  • Chapter
Physics and Chemistry of Partially Molten Rocks

Part of the book series: Petrology and Structural Geology ((PESG,volume 11))

Abstract

A fractionation model has been developed for differentiation of a hydrous mantle magma. As examples of such primitive melts from successive quenched fractionates of high temperature magma batches dyke rocks cross cutting the calc-alkaline batholith of the Adamello pluton have been utilised here. The heat budget during fractionation of these magmas has been evaluated from available thermodynamic data and a generalised phase diagram. Various thermal evolution paths have been calculated in terms of assimilation behaviour of different crustal rocks. The potential for assimilation of fertile crustal rocks by later fractionates, e.g., gabbro (basalt to basaltic — andesite volcanic equivalents) is much smaller (max. 30–40% equivalent mass) compared to picrite (up to 80%).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitcheson, S. J., and A.H. Forrest, Quantification of crustal contamination in open magmatic systems, Journal of Petrology, 35, 461–488, 1995.

    Google Scholar 

  • Barkhatov, L.S., D.N. Kagan, A.F. Tsytsarkin, E.E. Shpilrain, and K.A. Yakimovich, Investigation of the thermodynamic properties of molten aluminium oxide, Teploviz. Vys. Temp., 11, 1188–1191, 1973.

    Google Scholar 

  • Bergantz, G.W., Underplating and partial melting: implications for melt generation and extraction, Science, 245, 1093–1095, 1989.

    Article  Google Scholar 

  • Bergantz, G.W., and R. Dawes, Aspects of magma generation and ascent in the continental lithosphere, in: Magmatic Systems, edited by M. P. Ryan, pp. 291–317, Academic Press, Inc., 1994.

    Chapter  Google Scholar 

  • Bowen, N.L., The later stages of the evolution of the igneous rocks, J. Geology, Supplement to Number 8, pp.91, 1915.

    Google Scholar 

  • Burnham, C.W., and H. Nekvasil, Granite pegmatite magmas, Amer. Mineral., 71, 239–264, 1986.

    Google Scholar 

  • Gardien, V., A.B. Thompson, D. Grujic, and P. Ulmer, Melt fractions during crustal anatexis of biotite + plagioclase + quartz +/- muscovite assemblages, Journal of Geophysical Research, 100, 15581–15591, 1995.

    Article  Google Scholar 

  • Ghiorso, M. S., and P.B. Kelemen, Evaluating reaction stoichiometry in magmatic systems evolving under generalized thermodynamic constraints: examples comparing isothermal and isenthalpic assimilation, in: Magmatic Processes: Physicochemical Principles, edited by B. O. Mysen, pp. 319-336, The Geochemical Society of America, Spec. Pub., 1, 1987.

    Google Scholar 

  • Green, T. H., Anatexis of mafic crust and high pressure crystallisation of andesite, in: Andesites, edited by R. S. Thorpe, pp. 465–487, John Wiley, New York, 1982.

    Google Scholar 

  • Huppert, H. E., and R.S. Sparks, The generation of granitic magmas by intrusion of basalt into continental crust, Journal of Petrology, 29, 599–624, 1988.

    Google Scholar 

  • Kerrick, D.M., Contact metamorphism, Reviews in Mineralogy, 26, Mineralogical Society of America, 847 pp., 1992.

    Google Scholar 

  • Lange, R.L., and I.S.E. Carmichael, Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility, Mineralogical Society of America, Reviews in Mineralogy, 24, 25–64, 1990.

    Google Scholar 

  • Lange, R. L., J J. De Yoreo, and A. Navrotsky, Scanning calorimetric measurement of heat capacity during incongruent melting of diopside, Am. Mineral., 76, 904–912, 1990.

    Google Scholar 

  • Matile, L., Aufstieg und Platznahme von kalk-alkalinen Magmen — der Adamello-Batholith als Beispiel, Dissertation Nr. 11737, ETH-Zürich., 269 pp., 1996.

    Google Scholar 

  • Navrotsky, A., D. Ziegler, R. Oestrike, and P. Manier, Calorimetry of silicate melts at 1773 K: measurement of enthalpies of fusion and of mixing in the system diopside-anorthite-albite and anorthite-forsterite, Contrib. Mineral Petrol., 101, 122–130, 1989.

    Article  Google Scholar 

  • Naylor, B.F., and O.A. Cook, High-temperature heat contents of the metatitanates of calcium, iron and magnesium, J. Am. Chem. Soc., 68, 1003–1005, 1946.

    Article  Google Scholar 

  • Nicholls, J., and M.Z. Stout, Picrite magmas in Kilauea- Evidence from the 1967–1968 Halemaumau and Hiiaka eruptions, Hawaii, J. Petrology, 29, 1031–1057, 1988.

    Google Scholar 

  • Richet, P., Y. Bottinga, L. Deniélou, J.P. Petitet, and C. Téqui, Thermodynamic properties of quartz, cristobalite and amorphous SiO2: Drop-calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K, Geochim. Cosmochim. Acta, 46, 2639–2658, 1982.

    Article  Google Scholar 

  • Richet, P., and Y. Bottinga, Heat capacity of silicate liquids: new measurements on NaAlSinO2n+2 and KAlSi3O8, Geochim. Cosmochim. Acta, 48, 453–470, 1984a.

    Article  Google Scholar 

  • Richet, P., and Y. Bottinga, Anorthite, andesine, wollastonite, diopside, cordierite and pyrope: thermodynamics of melting, glass transition and properties of amorphous phases, Earth Planet. Sci. Lett., 24, 1–25, 1984b.

    Google Scholar 

  • Richet, P., and Y. Bottinga, Thermochemical properties of silicate glasses and liquids: a review. Reviews of Geophysics, 24, 1–25, 1986.

    Article  Google Scholar 

  • Robie, R.A., B.S. Hemingway, and J.R. Fischer, Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures, Geol. Survey Bull., 1452, 456 pp., 1978.

    Google Scholar 

  • Russell, J.K., B.R. Edwards, and L.D. Snyder, Volatile production possibilities during magmatic assimilation, in: Magmas, fluids and ore-deposits, edited by J.F.H. Thompson, Mineral. Assoc. Canada, Short Course Series 23, pp. 1–24, 1995.

    Google Scholar 

  • Rutter, M. J., and P.J. Wyllie, Melting of vapor-absent tonalite at 10 kbar to simulate dehydration melting in the deep crust, Nature, 331, 159–160, 1988.

    Article  Google Scholar 

  • Shaw, H.R., Viscosities of magmatic silicate liquids: an empirical method of prediction, Amer. Jour. Sci., 272, 870–889, 1972.

    Article  Google Scholar 

  • Stebbins, J.F., I.S.E. Carmicael, and L.K. Moret, Heat capacities and entropies of silicate liquids and glasses. Contrib. Mineral. Petrol., 86, 131–148, 1984.

    Article  Google Scholar 

  • Thompson, A. B., Fertility of crustal rocks during anatexis, Transactions of Royal Society of Edinburgh, Earth Sciences, 87, 1–10, 1996.

    Article  Google Scholar 

  • Ulmer, P., Basische und ultrabasische Gesteine des Adamello (Provinzen Brescia und Trento, Norditalien), Dissertation Nr. 8105, pp. 274, ETH-Zürich, 1986.

    Google Scholar 

  • Ulmer, P., High pressure phase equilibria of a calc-alkaline picro-basalt: Implications for the genesis of calc-alkaline magmas, Annual Report, Director of the Geophysical Laboratory, Carnegie Institute of Washington, pp. 28–35, 1988.

    Google Scholar 

  • Vielzeuf, D., and J.R. Holloway, Experimental determination of the fluid-absent melting relations in the pelitic system, Contributions to Mineralogy and Petrology, 98, 257–276, 1988.

    Article  Google Scholar 

  • Wright, T. L. and P.C. Doherty, A linear programming and least squares computer method for solving petrologic mixing problems, Geological Society of America Bulletin, 81, 1995–2008, 1977.

    Article  Google Scholar 

  • Wyllie, P. J., Crustal anatexis: an experimental review, Tectonophysics, 43, 41–71, 1977.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Matile, L., Thompson, A.B., Ulmer, P. (2000). A Fractionation Model for Hydrous Calc-Alkaline Plutons and the Heat Budget During Fractional Crystallisation and Assimilation. In: Bagdassarov, N., Laporte, D., Thompson, A.B. (eds) Physics and Chemistry of Partially Molten Rocks. Petrology and Structural Geology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4016-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4016-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5774-5

  • Online ISBN: 978-94-011-4016-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics