Skip to main content

Constraints on the Melt Distribution in Anisotropic Polycrystalline Aggregates Undergoing Grain Growth

  • Chapter
Physics and Chemistry of Partially Molten Rocks

Part of the book series: Petrology and Structural Geology ((PESG,volume 11))

Abstract

It has long been recognised that at elevated temperatures surface energy is the driving force for the distribution of melts and fluids among crystalline grains. While for ideal isotropic systems only two parameters, the dihedral angle (the ratio of grain boundary energy to solid-liquid surface energy) and the melt fraction are needed to completely constrain the melt distribution, anisotropic systems present a more complex problem. Surface energy minimisation includes, in addition to surface (or interface) area reduction, also interface rotation. Grain growth, driven by surface area reduction of the aggregate as a whole, means that locally interfaces constantly have to readjust their orientation, a feature not present in isotropic systems. In contrast to isotropic systems, where the geometry of the melt network is the same at all melt fractions, no unique link exists between melt fraction and melt geometry for anisotropic systems. This link is the basis for the high permeability calculated for isotropic aggregates. The degree of anisotropy and therefore the deviation from the ideal isotropic model depends not only on the solid but also on the melt or fluid involved. For the system olivine + basaltic melt the differences to the isotropic model are substantial. Since for anisotropic systems no model exists which can predict the texture of a partially molten aggregate, experimentally produced samples are evaluated in order to determine bulk physical properties of partial melts. Due to the high permeability predicted by the isotropic model, the in situ melt fraction in partially molten regions in the upper mantle would be so small that seismic velocities or the dynamic behaviour would remain essentially unaffected by the presence of melt. In contrast, the experimentally observed melt distribution indicates that a finite melt fraction is needed before efficient segregation can begin, which will affect seismic velocities and influence the dynamic behaviour of partially molten regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson, A.W., Physical Chemistry of Surfaces, 664 pp., John Wiley & Sons, New York, 1982.

    Google Scholar 

  • Ballhaus, C., and D.J. Ellis, Mobility of core melts during Earth’s accretion, Earth and Planet. Sci. Lett., 143, 137–145, 1996.

    Article  Google Scholar 

  • Bennema, P., and J.P. van der Eerden, Crystal graphs, connected nets, roughening transition and the morphology of crystals, in Morphology of crystals, edited by I. Sunagawa, pp. 1–77, Terra Scientific Publishing Co., 1987.

    Google Scholar 

  • Blackman, D.K., and J.-M. Kendall, Sensitivity of teleseismic body waves to mineral texture and melt in the mantle beneath a mid-ocean ridge, Phil. Trans. R. Soc. Lond. A, 355, 217–231, 1997.

    Article  Google Scholar 

  • Bourbie, T., and B. Zinszner, Hydraulic and acoustic properties as a function of porosity in Fountainebleau sandstone, J. Geophys. Res., 90, 11524–11532, 1985.

    Article  Google Scholar 

  • Bulau, J.R., H.S. Waff, and J.A. Tyburczy, Mechanical and thermodynamic constraints on fluid distribution in partial melts, J. Geophys. Res., 84, 6102–6108, 1979.

    Article  Google Scholar 

  • Cahn, J.W., and D.W. Hoffman, A vector thermodynamics for anisotropic surfaces-II. Curved and facetted surfaces, Acta Metall., 22, 1205–1214, 1974.

    Article  Google Scholar 

  • Cahn, J.W., and C. A. Handwerker, Equilibrium geometries of anisotropic surfaces an interfaces, Mat. Sci. Eng., A162, 83–95, 1993.

    Google Scholar 

  • Charlaix, E., E. Guyon, and S. Roux, Permeability of a random array of fractures of widely varying apertures, Transp. Porous Media, 2, 31–43, 1987.

    Article  Google Scholar 

  • Cmíral, M., J.D. Fitz Gerald, U.H. Faul, and D.H. Green, A close look at dihedral angles and melt geometry in olivine-basalt aggregates: A TEM study, Contrib. Mineral. Petrol., 130, 336–345, 1998.

    Article  Google Scholar 

  • Daines, M.J., and F.M. Richter, An experimental method for directly determining the interconnectivity of melt in a partially molten system, Geophys. Res. Lett., 15, 1459–1462, 1988.

    Article  Google Scholar 

  • Daines, M.J., and D.L. Kohlstedt, Influence of deformation on melt topology in peridotites, J. Geophys. Res., 102, 10257–10271, 1997.

    Article  Google Scholar 

  • Doyen, P.M., Permeability, conductivity, and pore shape evolution of sandstone, J. Geophys. Res., 93, 1129–1140, 1988.

    Article  Google Scholar 

  • Drury, M.R., and J.D. Fitz Gerald, Grain boundary melt films in an experimentally deformed olivine-orthopyroxene rock: implications for melt distribution in upper mantle, Geophys. Res. Lett., 23, 701–704, 1996.

    Article  Google Scholar 

  • Faul, U.H., The permeability of partially molten upper mantle rocks from experiments and percolation theory, J. Geophys. Res., 102, 10299–10311, 1997.

    Article  Google Scholar 

  • Faul, U.H., and J.D. Fitz Gerald, Grain misorientation in partially molten olivine aggregates: an electron backscatter diffraction study, Phys. Chem. Min., in press, 1999.

    Google Scholar 

  • Faul, U.H., D.R. Toomey, and H.S. Waff, Intergranular basaltic melt is distributed in thin, elongated inclusions, Geophys. Res. Lett., 21, 29–32, 1994.

    Article  Google Scholar 

  • Forsyth, D.W., Geophysical constraints on mantle flow and melt generation beneath mid-ocean ridges, in Mantle flow and melt generation, edited by J. Phipps Morgan, D.K. Blackman, and J.M. Sinton, pp. 1–65, AGU, Washington D. C., 1992.

    Chapter  Google Scholar 

  • Gueguen, Y., C. David, and M. Darot, Models and time constants for permeability evolution, Geophys. Res. Lett., 13, 460–463, 1986.

    Article  Google Scholar 

  • Heidug, W.K., A thermodynamic analysis of the conditions of equilibrium at nonhydrostatically stressed and curved solid-fluid interfaces, J. Geophys. Res., 96, 21909–21921, 1991.

    Article  Google Scholar 

  • Hess, P.C., Thermodynamics of thin fluid films, J. Geophys. Res., 99, 7219–7229, 1994.

    Article  Google Scholar 

  • Hirth, G., and D.L. Kohlstedt, Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the diffusion creep regime, J. Geophys. Res., 100, 1981–2001, 1995a.

    Article  Google Scholar 

  • Hirth, G., and D.L. Kohlstedt, Experimental constraints on the dynamics of the partially molten upper mantle 2. Deformation in the dislocation creep regime, J. Geophys. Res., 100, 15441–15449, 1995b.

    Article  Google Scholar 

  • Hoffman, D.W., and W.J. Cahn, A vector thermodynamics for anisotropic surfaces. I. Fundamentals and applications to plane surface junctions, Surf. Sci., 31, 368–388, 1972.

    Article  Google Scholar 

  • Holness, M.B., Equilibrium dihedral angles in the system quartz — CO2−H2O−NaCl at 800 C and 1–15 kbar: the effects of pressure and fluid composition on the permeability of quartzites, Earth and Planet. Sci. Lett., 114, 171–184, 1992.

    Article  Google Scholar 

  • Humphreys, E.D., and K.G. Dueker, Physical state of the western U.S. upper mantle, J. Geophys. Res., 99, 9635–9650, 1994.

    Article  Google Scholar 

  • Johnson, K.H., H.J.B. Dick, and N. Shimizu, Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites, J. Geophys. Res., 95, 2661–2678, 1990.

    Article  Google Scholar 

  • Jurewicz, A.J., and E.B. Watson, Cations in olivine, 2. Diffusion in olivine xenocrysts, with applications to petrology and mineral physics, Contrib. Mineral. Petrol., 99, 1109–1121, 1988.

    Google Scholar 

  • Jurewicz, S.R., and E.B. Watson, The distribution of partial melt in a granitic system: The application of liquid phase sintering theory, Geochim. Cosmochim. Acta, 49, 1109–1121, 1985.

    Article  Google Scholar 

  • Kelemen, P.B., G. Hirth, N. Shimizu, M. Spiegelman, and H.J.B. Dick, A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges, Phil. Trans. R. Soc. Lond. A, 355, 283–318, 1997.

    Article  Google Scholar 

  • Knackstedt, M.A., and S.F. Cox, Percolation and the pore geometry of crustal rocks, Phys. Rev. A, 51, R5181-R5184, 1995.

    Google Scholar 

  • Laporte, D. Wetting behaviour of partial melts during crustal anatexis: the distribution of hydrous silicic melts in polycrystalline aggregates of quartz, Contrib. Min. Pet., 116, 486–499, 1994.

    Article  Google Scholar 

  • Laporte, D., and B.E. Watson, Experimental and theoretical constrains on melt distribution in crustal sources: the effect of crystalline anisotropy on melt interconnectivity, Chem. Geol., 124, 161–184, 1995.

    Article  Google Scholar 

  • Laval, J.Y., and W. Swiatnicki, Atomic structure of grain boundaries in YBa2Cu3O7-x, Physica C, 221, 11–19, 1994.

    Article  Google Scholar 

  • Lewis, G.N., M. Randall, revised by:, K.S. Pitzer, and L. Brewer, Thermodynamics, 723 pp., McGraw-Hill Book Company, New York, 1961.

    Google Scholar 

  • Lifshitz, I.M., and V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 19, 35–50, 1961.

    Article  Google Scholar 

  • Lundstrom, C.C., J. Gill, Q. Williams, and M.R. Perfit, Mantle melting and basalt extraction by equilibrium porous flow, Science, 270, 1958–1961, 1995.

    Article  Google Scholar 

  • Magde, L.S., R.S. Detrick, and the Tera Group, Crustal and upper mantle contribution to the axial gravity anomaly at the southern East Pacific Rise, J. Geophys. Res., 100, 3747–3766, 1995.

    Article  Google Scholar 

  • Mavko, G.M., Velocity and attenuation in partially molten rocks, J. Geophys. Res., 85, 5173–5189, 1980.

    Article  Google Scholar 

  • McKenzie, D., Some remarks on the movement of small melt fractions in the mantle, Earth Planet. Sci. Lett., 95, 53–72, 1989.

    Article  Google Scholar 

  • Minarik, W.G., Ryerson, F.J., Watson, E.B., Textural entrapment of core-forming melts, Science, 272, 530–533, 1996.

    Article  Google Scholar 

  • Randle, V., The Measurement of Grain Boundary Geometry. Electron Microscopy in Materials Science Series, Institute of Physics Publishing, Bristol, 1993.

    Google Scholar 

  • Richardson, C., and D. McKenzie, Radioactive disequilibria from 2D models of melt generation by plumes and ridges, Earth and Planet. Sci. Lett., 128, 425–437, 1994.

    Article  Google Scholar 

  • Ricoult, D.L., and D.L. Kohlstedt, Structural width of low-angle grain boundaries in olivine, Phys. Chem. Min., 9, 133–138, 1983.

    Article  Google Scholar 

  • Sinha, M.C., Navin, D.A., MacGregor, L.M., Constable, S., Peirce, C., White, A., Heinson, G. and M.A. Inglis, Evidence for accumulated melt beneath the slow-spreading Mid-Atlantic Ridge, Phil. Trans. R. Soc. Lond. A, 355, 233–253, 1997.

    Article  Google Scholar 

  • Smith, C.S., Metal interfaces, p. 65, Am. Soc. Metals, Metals Park, OH, 1952.

    Google Scholar 

  • Smith, C.S., Some elementary principles of polycrystalline microstructure, Metal. Rev., 9, 1–48, 1964.

    Article  Google Scholar 

  • Sutton, A.P., and R.W. Balluffi, Interfaces in crystalline materials, 819 pp., Oxford University Press, Oxford, 1995.

    Google Scholar 

  • Swalin, R.A., Thermodynamics of Solids, 343 pp., J. Wiley, New York, 1962.

    Google Scholar 

  • The MELT Seismic Team, Imaging the Deep Seismic Structure Beneath a Mid-Ocean Ridge: The MELT Experiment, Science, 280, 1215–1218, 1998.

    Article  Google Scholar 

  • Turcotte, D.L., and G. Schubert, Geodynamics, John Wiley, New York, 1982.

    Google Scholar 

  • Vaughan, P.J., D.L. Kohlstedt, and H.S. Waff, Distribution of the glass phase in hot-pressed, olivine-basalt aggregates: an electron microscopy study, Contrib. Mineral. Petrol., 81, 253–261, 1982.

    Article  Google Scholar 

  • von Bargen, N., and H.S. Waff, Permeabilities, interfacial areas and curvatures of partially molten systems: Results of numerical computations of equilibrium microstructures, J. Geophys. Res., 91, 9261–9276, 1986.

    Article  Google Scholar 

  • Waff, H.S., and J.R. Bulau, Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic stress conditions, J. Geophys. Res., 84, 6109–6114, 1979.

    Article  Google Scholar 

  • Waff, H.S., and U.H. Faul, Effects of crystalline anisotropy on fluid distribution in ultramafic partial melts, J. Geophys. Res., 97, 9003–9014, 1992.

    Article  Google Scholar 

  • Wagner, C., Theorie der Alterung von Niederschlaegen durch Umloesen (Ostwald Reifung), Z. Elektrochem., 65, 581–591, 1961.

    Google Scholar 

  • Watson, E.B., and J.M. Brenan, Fluids in the lithosphere. 1. Experimentally-determined wetting characteristics of CO2-H2O fluids and their implications for fluid transport, hostrock physical properties, and fluid inclusion formation, Earth and Planet. Sci. Lett., 85, 497–515, 1987.

    Article  Google Scholar 

  • Watson, E.B., Diffusion in fluid-bearing and slightly-melted rocks: experimental and numerical approaches illustrated by iron transport in dunite, Contrib. Mineral. Petrol., 707, 417–434, 1990.

    Google Scholar 

  • Wilkens, R.H., G..J. Fryer, and J. Karsten, Evolution of porosity and seismic structure of upper oceanic crust: Importance of Aspect Rations, J. Geophys. Res., 96, 17981–17995, 1991.

    Article  Google Scholar 

  • Zhang, S., M.S. Paterson, and S.F. Cox, Porosity and permeability evolution during hot isostatic pressing of calcite aggregates, J. Geophys. Res., 99, 15741–15760, 1994.

    Article  Google Scholar 

  • Zhu, W., C. David, and T-f. Wong, Network modelling of permeability evolution during cementation and hot isostatic pressing, J. Geophys. Res., 100, 15451–15464, 1995.

    Article  Google Scholar 

  • Zimmerman, M.E., and D.L. Kohlstedt, Microstructural evolution in anisotropic elastic media: evolution of melt distribution in upper mantle rocks, EOS, 78, F671, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Faul, U.H. (2000). Constraints on the Melt Distribution in Anisotropic Polycrystalline Aggregates Undergoing Grain Growth. In: Bagdassarov, N., Laporte, D., Thompson, A.B. (eds) Physics and Chemistry of Partially Molten Rocks. Petrology and Structural Geology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4016-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4016-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5774-5

  • Online ISBN: 978-94-011-4016-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics