Skip to main content

Measles as a Testbed for Characterising Nonlinear Behaviour in Ecology

  • Chapter
Chaos in Real Data

Part of the book series: Population and Community Biology Series ((PCBS,volume 27))

  • 283 Accesses

Abstract

Since the seminal article of May (1976), the search for chaos continues to exert a fascination for ecologists. An ideal system in which to carry out such a quest would provide long replicated time series, of observations uncomplicated by measurement error or process noise. This dynamicist’s paradise would also lend itself to accurate mechanistic modelling, at a variety of spatial scales. Finally (and less obvious), changes in the system’s parameters which alter nonlinear behaviour should be readily and independently measurable (and, even more ideally, manipulable).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson R.M., Grenfell B.T. and May R.M. (1984) Oscillatory fluctuations in the incidence of infectious disease and the impact of vaccination: time series analysis. Journal of Hygiene (Cambridge), 93, 587–608.

    Article  CAS  Google Scholar 

  • Anderson R.M. and May R.M. (1982) Directly transmitted infectious diseases: control by vaccination. Science, 215, 1053–1060.

    Article  PubMed  CAS  Google Scholar 

  • Anderson R.M. and May R.M. (1984) Spatial, temporal, and genetic heterogeneity in host populations and the design of immunization programmes. IMA Journal of Mathematics Applied in Medicine and Biology, 1, 233–266.

    Article  PubMed  CAS  Google Scholar 

  • Anderson R.M. and May R.M. (1985) Age-related changes in the rate of disease transmission: implications for the design of vaccination programmes. Journal of Hygiene (Cambridge)., 94, 365–436.

    Article  CAS  Google Scholar 

  • Anderson R.M. and May R.M. (1991) Infectious diseases of humans: dynamics and control. Oxford University Press.

    Google Scholar 

  • Aron J.L. (1990) Multiple attractors in the response to a vaccination program. Theoretical Population Biology, 38, 58–67.

    Article  PubMed  CAS  Google Scholar 

  • Aron J.L. and Schwartz I.B. (1984) Seasonality and period-doubling bifurcations in an epidemic model. Journal of Theoretical Biology, 110, 665–679.

    Article  PubMed  CAS  Google Scholar 

  • Bartlett M.S. (1957) Measles periodicity and community size. Journal of the Royal Statistical Society A, 120, 48–70.

    Article  Google Scholar 

  • Bartlett M.S. (1960) The critical community size for measles in the U.S. Journal of the Royal Statistical Society A, 123, 37–44.

    Article  Google Scholar 

  • Bartlett M.S. (1990) Chance or chaos. Journal of the Royal Statistical Society B., 153, 321–347.

    Article  Google Scholar 

  • Black F.L. (1966) Measles endemicity in insular populations: critical community size and its evolutionary implication. Journal of Theoretical Biology, 11, 207–211.

    Article  PubMed  CAS  Google Scholar 

  • Black F.L. (1984) Measles. In A.S. Evans (ed.), Viral Infections of Humans: Epidemiology and Control. New York, Plenum, 397–418.

    Book  Google Scholar 

  • Bolker B. (1993) Chaos and complexity in measles models: a comparative numerical study. IMA Journal of Mathematics Applied in Medicine and Biology, 10, 83–95.

    Article  PubMed  CAS  Google Scholar 

  • Bolker B.M. and Grenfell B.T. (1993) Chaos and biological complexity in measles dynamics. Proceedings of the Royal Society of London Biology, 251, 75–81.

    Article  CAS  Google Scholar 

  • Bolker B.M. and Grenfell B.T. (1995) Space, persistence and the dynamics of measles epidemics. Philosophical Transactions of the Royal Society Series B, Biological Sciences, 348, 309–320.

    Article  CAS  Google Scholar 

  • Bolker B.M. and Grenfell B.T. (1996) Impact of vaccination on the spatial correlation and dynamics of measles epidemics. Proceedings of the National Academy of Science of the USA, Biological Sciences. (In Press)

    Google Scholar 

  • Brownlee J. (1919) Periodicities of epidemics of measles in the large towns of Great Britain and Ireland. Proceedings of the Royal Society of Medicine, 12, 77–117.

    PubMed  CAS  Google Scholar 

  • Casdagli M. (1992) Chaos and deterministic versus stochastic nonlinear modelling. Journal of the Royal Statistical Society B., 54, 303–328.

    Google Scholar 

  • Cliff A.D., Haggett P., Ord J.K. and Versey G.R. (1981) Spatial diffusion: an historical geography of epidemics in an island community. Cambridge University Press, Cambridge

    Google Scholar 

  • Cliff A.D., Haggett P. and Smallman-Raynor M. (1993) Measles: an historical geography of a major human viral disease from global expansion to local retreat, 1840–1990. Blackwell, Oxford

    Google Scholar 

  • Cliff A.D. and Haggett P. (1988) Atlas of Disease Distributions: Analytic Approaches to Epidemiologic Data. Basil Blackwell, Oxford

    Google Scholar 

  • Dietz K. (1976) The incidence of infectious diseases under the influence of seasonal fluctuations. Lecture Notes in Biomathematics, 11, 1–15.

    Article  Google Scholar 

  • Dietz K. and Schenzle D. (1985) Mathematical models for infectious disease statistics. In A.C. Atkinson and S.E. Feinberg (eds.), A Celebration of Statistics. New York, Springer, 167–204.

    Chapter  Google Scholar 

  • Drepper F.R. (1988) Unstable determinism in the information production profile of an epidemiological time series. In W. Wolff, C.-J. Soeder and F.R. Drepper (eds.), Ecodynamics: contributions to theoretical ecology. London, Springer-Verlag, 319–332.

    Google Scholar 

  • Efron B. (1979) Bootstrap methods: another look at the jackknife. Annals of Statistics, 7, 1–26.

    Article  Google Scholar 

  • Ellner S., Gallant A.R. and Theiler J. (1993) Detecting nonlinearity and chaos in epidemic data. (Abstract)

    Google Scholar 

  • Ellner S., Gallant A.R. and Theiler J. (1995) Detecting nonlinearity and chaos in epidemic data. In D. Mollison (ed.), Epidemic models: their structure and relation to data. Cambridge University Press

    Google Scholar 

  • Eisner J.B. and Tsonis A.A. (1993) Nonlinear prediction, chaos, and noise. Bulletin of the American Meteorological Society, 74, 43

    Google Scholar 

  • Engbert R. and Drepper F.R. (1994a) Chance and chaos in population biology-models of recurrent epidemics and food-chain dynamics. Chaos Solutions and Fractals, 4, 1147–1169.

    Article  Google Scholar 

  • Engbert R. and Drepper F.R. (1994b) Qualitative analysis of unpredictability: a case study from childhood epidemics (“Predictability and nonlinear modelling in natural sciences and economics”, April 4–7, 1993, ageningen (NL)). In Anonymous

    Google Scholar 

  • Ferguson, N.M., Nokes, D.J. and Anderson, R.M. (1996). Dynamical complexity in age structured models of the measles virus: epidemiological implications at high levels of vaccine uptake. Mathematical Biosciences, 138, 101–130

    Article  PubMed  CAS  Google Scholar 

  • Farmer J.D. and Sidorowich J.J. (1987) Predicting chaotic time series. Physical Review Letters, 59, 845–848.

    Article  PubMed  Google Scholar 

  • Fine P.E.M. and Clarkson J.A. (1982a) Measles in England and Wales-II: The impact of the measles vaccination programme on the distribution of immunity in the population. International Journal of Epidemiology, 11, 15–25.

    Article  PubMed  CAS  Google Scholar 

  • Fine P.E.M. and Clarkson J.A. (1982b) Measles in England and Wales-I: an analysis of factors underlying seasonal patterns. International Journal of Epidemiology, 11, 5–15.

    Article  PubMed  CAS  Google Scholar 

  • Godfray H.C.J. and Grenfell B.T. (1993) The continuing quest for chaos. TREE., 8, 43–44.

    PubMed  CAS  Google Scholar 

  • Grenfell B.T. (1992) Chance and chaos in measles dynamics. Journal of the Royal Statistical Society B., 54, 383–398.

    Google Scholar 

  • Grenfell B.T., Kleczkowski A. and Ellner S.P. (1994a) Nonlinear forecasting as a tool to analyse measles dynamics. In H. Tong, (ed.), Forecasting and chaos. Singapore, World Scientific.

    Google Scholar 

  • Grenfell B.T, Kleczkowski A., Ellner S.P. and Bolker B.M. (1994b) Measles as a case-study in nonlinear forecasting and chaos. Philosophical Transactions of the Royal Society of London Series A-Physical Sciences and Engineering, 348, 515–530.

    Article  Google Scholar 

  • Grenfell B.T, Bolker B.M. and Kleczkowski A. (1995a) Demography, seasonality and the dynamics of measles in developed countries. In D. Mollison (ed.), Epidemic models: their structure and relation to data. Cambridge, Cambridge University Press

    Google Scholar 

  • Grenfell B.T, Kleczkowski A., Gilligan C.A. and Bolker B.M. (1995b) Spatial heterogeneity, nonlinear dynamics and chaos in infectious diseases. Statistical Methods in Medical Research, 4, 160–183.

    Article  PubMed  CAS  Google Scholar 

  • Grenfell B.T. and Bolker B.M. (1992) Population dynamics of measles. In M.E. Scott and G. Smith (eds.), Parasitic and infectious diseases: epidemiology and control. Orlando, Academic Press, 219–234.

    Google Scholar 

  • Grossman Z. (1980) Oscillatory phenomena in a model of infectious diseases. Theoretical Population Biology, 18, 204–243.

    Article  PubMed  CAS  Google Scholar 

  • Hamer W.H. (1906) Epidemic disease in England-the evidence of variability and of persistency of type. Lancet, 1, 733–739.

    Google Scholar 

  • Holden A.V. (1986) Chaos. Princeton University Press, Princeton

    Google Scholar 

  • Kermack W.O. and McKendrick A.G. (1927) A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London A., 115, 700–721.

    Article  Google Scholar 

  • Kermack W.O. and McKendrick A.G. (1932) A contribution to the mathematical theory of epidemics. Part II. The problem of endemicity. Proceedings of the Royal Society of London A., 138, 55–83.

    Article  Google Scholar 

  • Kermack W.O. and McKendrick A.G. (1933) A contribution to the mathematical theory of epidemics. Part III. Further studies of the problem of endemicity. Proceedings of the Royal Society of London A., 141, 92–122.

    Article  Google Scholar 

  • Kot M., Graser D.J., Truty G.L., Schaffer W.M. and Olsen L.F. (1988) Changing criteria for imposing order. Ecological Modelling, 43, 75–110.

    Article  Google Scholar 

  • London W.P. and Yorke J.A. (1973) Recurrent outbreaks of measles, chickenpox and mumps. I. Seasonal variation in contact rates. American Journal of Epidemiology, 98, 453–468.

    PubMed  CAS  Google Scholar 

  • May R.M. (1976) Simple mathematical models with very complicated dynamics. Nature, 261, 459–467.

    Article  PubMed  CAS  Google Scholar 

  • May R.M. (1986) Population biology of microparasitic infections. In Hallam, T.G. and Levin, S.A. (eds.), Biomathematics vol. 17. Berlin, Springer-Verlag, 405–442.

    Google Scholar 

  • May R.M. and Anderson R.M. (1984) Spatial heterogeneity and the design of immunization programs. Mathematical Biosciences, 72, 83–111.

    Article  Google Scholar 

  • Mclean A.R. and Anderson R.M. (1988a) Measles in developing countries. Part I. Epidemiological parameters and patterns. Epidemiology and Infection, 100, 111–133.

    Article  PubMed  CAS  Google Scholar 

  • Mclean A.R. and Anderson R.M. (1988b) Measles in developing countries. Part II. The predicted impact of mass vaccination. Epidemiology and Infection, 100, 419–442.

    Article  PubMed  CAS  Google Scholar 

  • Mollison D. and Kuulasmaa K. (1985) Spatial epidemic models: theory and simulations. In P.J. Bacon (ed.), Population dynamics of rabies in wildlife. London, Academic Press

    Google Scholar 

  • Mouchet J. and Brengues J. (1990) [Agriculture-health interface in the field of epidemiology of vector-borne diseases and the control of vectors]. Bulletin de la Societe de Pathologie Exotique., 83, 376–393.

    PubMed  CAS  Google Scholar 

  • Nokes D.J. and Anderson R.M. (1988) Measles, mumps, and rubella vaccine: what coverage to block transmission? [letter]. Lancet, 2, 1374

    Article  PubMed  CAS  Google Scholar 

  • Olsen L.F., Truty G.L. and Schaffer W.M. (1988) Oscillations and chaos in epidemics: a nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark. Theoretical Population Biology, 33, 344–370.

    Article  PubMed  CAS  Google Scholar 

  • Olsen L.F. and Schaffer W.M. (1990) Chaos versus noisy periodicity: alternative hypotheses for childhood epidemics. Science, 249, 499–504.

    Article  PubMed  CAS  Google Scholar 

  • Rand D.A. and Wilson H. (1991) Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics. Proceedings of the Royal Society of London Biological Sciences, 246, 179–184.

    Article  CAS  Google Scholar 

  • Schaffer W.M. (1985a) Order and chaos in ecological systems. Ecology, 66, 93–106.

    Article  Google Scholar 

  • Schaffer W.M. (1985b) Can nonlinear dynamics elucidate mechanisms in ecology and epidemiology? IMA Journal of Mathematics Applied in Medicine and Biology, 2, 221–252.

    Article  PubMed  CAS  Google Scholar 

  • Schaffer W.M., Kendall B.E., Tidd C.W. and Olsen L.F. (1993) Transient periodicity and episodic predictability in biological dynamics. IMA Journal of Mathematics Applied in Medicine and Biology, 10, 227–247.

    Article  PubMed  CAS  Google Scholar 

  • Schaffer W.M. and Kot M. (1985) Nearly one dimensional dynamics in an epidemic. Journal of Theoretical Biology, 112, 403–427.

    Article  PubMed  CAS  Google Scholar 

  • Schaffer W.M. and Kot M. (1986a) Chaos in ecological systems: the coals that Newcastle forgot. TREE, 1, 58–63.

    PubMed  CAS  Google Scholar 

  • Schaffer W.M. and Kot M. (1986b) Differential systems in ecology and epidemiology. In A.V. Holden (ed.), Chaos. Princeton, New Jersey, Princeton University Press, 158–178.

    Google Scholar 

  • Schenzle D. (1984) An age-structured model of pre-and post-vaccination measles transmission. IMA Journal of Mathematics Applied in Medicine and Biology, 1, 169–191.

    Article  PubMed  CAS  Google Scholar 

  • Soper M.A. (1929) The interpretation of periodicity in disease prevalence. Journal of the Royal Statistical Society, Series A, 92, 34–61.

    Article  Google Scholar 

  • Stone L. (1992) Coloured noise or low-dimensional chaos. Proceedings of the Royal Society of London Biological Sciences, 250, 77–81.

    Article  CAS  Google Scholar 

  • Sugihara G., Grenfell B. and May R.M. (1990) Distinguishing error from chaos in ecological time series. Philosophical Transactions of the Royal Society Series B, Biological Sciences, 330, 235–251.

    Article  CAS  Google Scholar 

  • Sugihara G. and May R.M. (1990) Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 344, 734–741.

    Article  PubMed  CAS  Google Scholar 

  • Sugihara G. and May R.M. (1992) How predictable is chaos-reply. Nature, 355, 6

    Article  Google Scholar 

  • Tidd C.W., Olsen L.F. and Schaffer W.M. (1993) The case for chaos in childhood epidemics: II. Predicting historical epidemics from mathematical models. Proceedings of the Royal Society of London Biological Sciences, 254, 257–273.

    Article  CAS  Google Scholar 

  • Tong H. (1990) Non-linear time series: a dynamical systems approach. Oxford University Press, Oxford

    Google Scholar 

  • Yao Q.W. and Tong H. (1994) On prediction and chaos in stochastic systems. Philosophical Transactions of the Royal Society of London Series A-Physical Sciences and Engineering, 348, 357–369.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joe N. Perry Robert H. Smith Ian P. Woiwod David R. Morse

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grenfell, B.T. (2000). Measles as a Testbed for Characterising Nonlinear Behaviour in Ecology. In: Perry, J.N., Smith, R.H., Woiwod, I.P., Morse, D.R. (eds) Chaos in Real Data. Population and Community Biology Series, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4010-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4010-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5772-1

  • Online ISBN: 978-94-011-4010-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics