Skip to main content

Management of low bone mass in patients with inflammatory bowel disease

  • Chapter
Trends in Inflammatory Bowel Disease Therapy 1999
  • 71 Accesses

Abstract

Prevention of osteoporosis requires first that those at increased risk be identified. Risk factors for osteoporosis include age, gonadal hormone deficiency, chronic illness such as inflammatory bowel disease (IBD) and rheumatoid arthritis, drugs such as glucocorticoids, low body mass index, and smoking. Since patients with IBD generally have two or more risk factors they must be considered at increased risk to develop osteoporosis. They therefore should, as part of the initial medical work-up, have bone mineral density (BMD) measured. If the BMD is decreased they should be treated.

The strategies for prevention and treatment are the same and are based on the assumption, supported by considerable evidence, that decreasing BMD is due primarily to a relative increase in bone resorption. The ultimate objective of therapy is to prevent fracture. This objective is best accomplished by eliminating risk factors and using drugs to inhibit bone resorption. Elimination of risk factors includes optimizing nutritional status, especially calcium and vitamin D intake, ensuring normal gonadal function, encouraging weight-bearing physical activity, eliminating smoking and excess alcohol consumption, and where possible eliminating or diminishing total consumption of drugs such as glucocorticoids and agents such as psychoactive drugs and antihypertensives, which tend to increase the risk of falling. All patients should have a baseline BMD measurement of lumbar spine and hip and these measurements should be repeated as risk changes, e.g. introduction of glucocorticoid therapy, weight loss or other evidence of failing nutrition, and fracture. If BMD is decreased antiresorptive drugs should be introduced. Those approved for use in Canada include oestrogen, bisphosphonates, calcitonin, and selective oestrogen receptor modulators (SERMs). In postmenopausal women the treatment of choice, according to most published guidelines is hormone replacement therapy (HRT), with one of the bisphosphonates as a second choice. In premenopausal women and men the antiresorptive agent of choice is a bisphosphonate. Response to therapy should be monitored with bone density measurements. Evidence of treatment failure includes decreasing BMD, and occurrence of a ‘fragility’fracture. If this occurs combination therapy, e.g. HRT+bisphosphonate, may be considered.

Bisphosphonates are very poorly and unpredictably absorbed from the normal gastrointestinal tract. The rate of absorption of these drugs from the intestine of IBD patients is unknown. It may therefore be desirable or necessary to use intravenous bisphosphonate therapy in IBD patients.

The efficacy and safety of drugs which increase BMD (fluoride) and/or normal bone formation (intermittent parathyroid hormone) have yet to be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Compston JE. Osteoporosis, corticosteroids and inflammatory bowel disease. Aliment Pharmacol Ther 1995;9:237–50.

    Google Scholar 

  2. Roux C, Abitbol V, Chaussade S et al. Bone loss in patients with inflammatory bowel disease: a prospective study. Osteoporosis Int 1995;5:156–60.

    Article  CAS  Google Scholar 

  3. Andreassen H, Rungby J, Dahlerup JF, Mosekilde L. Inflammatory bowel disease and osteoporosis. Scand J Gastroenterol 1997;32:1247–55.

    Article  PubMed  CAS  Google Scholar 

  4. Slemenda CW, Miller JZ, Hui SL, Reister TK, Johnston CC. Role of physical activity in the development of skeletal mass in children. J Bone Miner Res 1991;6:1227–33.

    Article  PubMed  CAS  Google Scholar 

  5. Recker RR, Davies KM, Hinders M, Heaney RP, Stegman MR, Kimmel DB. Bone gain in young adult women. J Am Med Assoc 1992;268:2403–8.

    Article  CAS  Google Scholar 

  6. Kra11 EA, Dawson-Hughes B. Heritable and life-style determinants of bone mineral density. J Bone Miner Res 1993;8:1–9.

    Article  PubMed  CAS  Google Scholar 

  7. Bonjour JP, Carrie AL, Ferrari S et al. Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest 1997;99:1287–94.

    Article  PubMed  CAS  Google Scholar 

  8. Weaver CM, Peacock M, Johnston CC. Commentary. Adolescent nutrition in the prevention of postmenopausal osteoporosis. J Clin Endocrinol Metab 1999;84:1839–43.

    Article  PubMed  CAS  Google Scholar 

  9. Slemenda CL, Peacock M, Hui S, Johnston CC. Sex steroids, bone mass, and bone loss. A prospective study of pre-, peri-, and postmenopausal women. J Clin Invest 1996;97:14–21.

    Article  CAS  Google Scholar 

  10. Consensus development conference. Diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 1993;94:646–50.

    Article  Google Scholar 

  11. Sambrook P, Birmingham J, Kemper S, et al. Corticosteroid effects on proximal femur bone loss. J Bone Miner Res 1990;5:1211–16.

    Article  PubMed  CAS  Google Scholar 

  12. Sambrook P, Birmingham J, Kelly P et al. Prevention of corticosteroid osteoporosis. A comparison of calcium, calcitriol, and calcitonin [see comments]. N Engl J Med 1993;328:1747–52.

    Article  PubMed  CAS  Google Scholar 

  13. WHO. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Technical report series 843. Geneva: WHO;1994.

    Google Scholar 

  14. Miller PD, Zapalowski C, Kulak CAM, Bilezikian JP. Commentary. Bone densitometry: the best way to detect osteoporosis and to monitor therapy. J Clin Endocrinol Metab 1999;84:1867–71.

    Article  PubMed  CAS  Google Scholar 

  15. Hui SL, Slemenda CW, Johnston CC, Jr. Age and bone mass as predictors of fracture in a prospective study. J Clin Invest 1988;81:1804–9.

    Article  PubMed  CAS  Google Scholar 

  16. Cummings SR, Black DM, Nevitt MC et al. Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group [see comments]. Lancet 1993;341:72–5.

    Article  PubMed  CAS  Google Scholar 

  17. Kroger H, Huopio J, Honkanen R et al. Prediction of fracture risk using axial bone mineral density in a perimenopausal population: a prospective study. J Bone Miner Res 1995;10:302–6.

    Article  PubMed  CAS  Google Scholar 

  18. Kleerekoper M. The role of fluoride in the prevention of osteoporosis. Endocrinol Metab Clin N Am 1998;27:441–52.

    Article  CAS  Google Scholar 

  19. Finkelstein JS, Klibanski A, Schaefer EH, Hornstein MD, Schiff I, Neer RM. Parathyroid hormone for the prevention of bone loss induced by estrogen deficiency. N Engl J Med 1994;331:1618–23.

    Article  PubMed  CAS  Google Scholar 

  20. Sone T, Fukunaga M, Ono S, Nishiyama T. A small dose of human parathyroid hormone (1–34) increased bone mass in the lumbar vertebrae in patients with senile osteoporosis. Miner Electrolyte Metab 1995;21:232–5.

    PubMed  CAS  Google Scholar 

  21. Hodsman AB, Fraher LJ, Watson PH et al. A randomized controlled trial to compare the efficacy of cyclical parathyroid hormone versus cyclical parathyroid hormone and sequential calcitonin to improve bone mass in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 1997;82:620–8.

    Article  PubMed  CAS  Google Scholar 

  22. Riggs BL, Hodgson SF, O’Fallon WM et al. Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis [see comments]. N Engl J Med 1990;322:802–9.

    Article  PubMed  CAS  Google Scholar 

  23. Pak CY, Sakhaee K, Zerwekh JE, Parcel C, Peterson R, Johnson K. Safe and effective treatment of osteoporosis with intermittent slow release sodium fluoride: augmentation of vertebral bone mass and inhibition of fractures. J Clin Endocrinol Metab 1989;68:150–9.

    Article  PubMed  CAS  Google Scholar 

  24. Pak CY, Sakhaee K, Piziak V et al. Slow-release sodium fluoride in the management of postmenopausal osteoporosis. A randomized controlled trial [see comments]. Ann Intern Med 1994;120:625–32.

    PubMed  CAS  Google Scholar 

  25. Cummings SR, Nevitt MC, Browner WS et al. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med 1995;332:767–73.

    Article  PubMed  CAS  Google Scholar 

  26. Robinson RJ, al-Azzawi F, Iqbal SJ et al. Osteoporosis and determinants of bone density in patients. Dig Dis Sci 1998;43:2500–6.

    Article  PubMed  CAS  Google Scholar 

  27. Valentine JF, Sninsky CA. Prevention and treatment of osteoporosis in patients with inflammatory bowel disease. Am J Gastroenterol 1999;94:878–83.

    Article  PubMed  CAS  Google Scholar 

  28. Reed CA, Nichols DL, Bonnick SL, DiMarco NM. Bone mineral density and dietary intake in patients with Crohn’s disease. J Clin Densit 1998;1:33–40.

    Article  CAS  Google Scholar 

  29. Ravn P, Hosking D, Thompson D et al. Monitoring of alendronate treatment and prediction of effect on bone mass by biochemical markers in the early postmenopausal intervention cohort study. J Clin Endocrinol Metab 1999;84:2363–8.

    Article  PubMed  CAS  Google Scholar 

  30. Ravn P, Clemmesen B, Christiansen C, Group AOPS. Biochemical markers can predict the response in bone mass during Alendronate treatment in early postmenopausal women. Bone 1999;24:237--44.

    Article  PubMed  CAS  Google Scholar 

  31. Hannon R, Blumsohn A, Naylor K, Eastell R. Response of biochemical markers of bone turnover to hormone replacement therapy: impact of biological variability. J Bone Miner Res 1998;13:1124–33.

    Article  PubMed  CAS  Google Scholar 

  32. Delmas PD, Bjarnason NH, Mitlak BH et al. Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N Engl J Med 1997;337:1641–7.

    Article  PubMed  CAS  Google Scholar 

  33. Yendt ER. Vitamin D and osteoporosis. Osteoporosis Society of Canada Bulletin 1994;2.

    Google Scholar 

  34. Villareal DT, Civitelli R, Chines A, Avioli LV. Subclinical vitamin D deficiency in postmenopausal women with low vertebral bone mass. J Clin Endocrinol Metab 1991;72:628–34.

    Article  PubMed  CAS  Google Scholar 

  35. Punnonen R, Salmi J, Tuimala R, Jarvinen M, Pystynen P. Vitamin D deficiency in women with femoral neck fracture. Maturitas 1986;8:291–5.

    Article  PubMed  CAS  Google Scholar 

  36. Holick MF. McCollum Award Lecture, 1994: vitamin D — new horizons for the 21st century. Am J Clin Nutr 1994;60:619–30.

    PubMed  CAS  Google Scholar 

  37. Holick MF. Environmental factors that influence the cutaneous production of vitamin D. Am J Clin Nutr 1995;61(3Suppl.):638--45S.

    Google Scholar 

  38. Kessenich CR, Rosen CJ. Vitamin D and bone status in elderly women. Orthop Nurs 1996;15:67–71.

    PubMed  CAS  Google Scholar 

  39. Adachi JD, Bensen WG, Brown J et al. Intermittent etidronate therapy to prevent corticosteroidinduced osteoporosis. N Engl J Med 1997;337:382–7.

    Article  PubMed  CAS  Google Scholar 

  40. Adachi JD, Bensen WG, Anastassiades TP et al. Etidronate in the prevention of corticosteroidinduced osteoporosis: one year follow-up on calcium only. Arthritis Rheum 1998;41:5137.

    Google Scholar 

  41. Saag KG, Group G-IOIS. Alendronate for the prevention and treatment of glucocorticoidinduced osteoporosis. N Engl J Med 1998;339:292–9.

    Article  PubMed  CAS  Google Scholar 

  42. Gallacher SJ, Fenner JAK, Anderson K et al. Intravenous pamidronate in the treatment of osteoporosis associated with corticosteroid dependent lung disease: an open pilot study. Thorax 1992;47:932–6.

    Article  PubMed  CAS  Google Scholar 

  43. Boutsen Y, Jamart J, Esselinckx W, Stoffel M, Devogelaer J-P. Primary prevention of glucocorticoid-induced osteoporosis with intermittent intravenous pamidronate: a randomized trial. Calcif Tissue Int 1997;61:266–71.

    Article  PubMed  CAS  Google Scholar 

  44. Woitge HW, Pecherstorfer M, Li Y et al. Novel markers of bone resorption: clinical assessment and comparison with established urinary indices. J Bone Miner Res 1999;14:792–801.

    Article  PubMed  CAS  Google Scholar 

  45. Walsh LJ, Wong CA, Pringle M, Tattersfield AE. Use of oral corticosteroids in the community and the prevention of secondary osteoporosis: a cross sectional study. Br Med J 1996;313:344–6.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tenenhouse, A. (2000). Management of low bone mass in patients with inflammatory bowel disease. In: Williams, C.N., et al. Trends in Inflammatory Bowel Disease Therapy 1999. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4002-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4002-7_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5769-1

  • Online ISBN: 978-94-011-4002-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics