Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 492))

Abstract

We describe examples for an optical gas sensor (oxygen) and an optical ion sensor (pH), and discuss how the existing need for complete mass transfer in solid-state optical sensors determines the choice of the appropriate polymer. Examples are given for biomedical instrumentation based on mass-fabricated optical sensors for oxygen, carbon dioxide and pH. We also show that specific recognition of ions, particularly of the clinically important alkali ions, is much more difficult in solid-state sensors. We discuss existing schemes for ions and demonstrate that none of them satisfies the need for rapid, pH-independent determination of ions in whole blood at room temperature and without addition of any reagent. The photo-induced electron transfer (PET) effect represents an attractive alternative to the use of fluoro-ionophores, but it is shown that PET — while being extremely useful when studied in solution — not necessarily does not occur in solid-state sensor matrices to the extent it does in fluid solution, a fact that is explained mainly in terms of rotational restriction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolfbeis, O. S., Oxygen Sensors, in: Fiber Optic Chemical Sensors and Biosensors, CRC Press, Boca Raton, Fl., 1991, chapter 9.

    Google Scholar 

  2. Batzer H., Ed., Polymeric Materials, Thieme Publ., Stuttgart-New York, 1985.

    Google Scholar 

  3. Yasuda H. and Stannett V., Permeability Coefficients, in Polymer Handbook, Brandrup J. and Immergut E. H. (eds.), Wiley, New York, 1981, p. 111–229.

    Google Scholar 

  4. Wolfbeis O. S., Leiner M. J. P. and Posch H. E., A New Sensing Material for Optical Oxygen Measurement, Mikrochim. Acta III, (1986) 359.

    Article  Google Scholar 

  5. Bacon J. R. and Demas J. N., Determination of Oxygen Concentrations by Luminescence Quenching of a Polymer-Immobilized Transition-Metal Complex, Anal. Chem. 59 (1987) 2780.

    Article  CAS  Google Scholar 

  6. Bambot S. B., Rao G., Terpetschnig E. and Lakowicz J. R., Sensing Oxygen Through Skin Using a Red Diode Laser and Fluorescent Lifetimes, Biosensors & Bioelectronics 10 (1995) 643.

    Article  CAS  Google Scholar 

  7. Papkovsky D. B., Olah J., Troyanovsky I. V., Sadovsky N. A., Rumyantseva V. D., Mironov A. F., Yaropolov A. I. and Savitsky A. P., Phosphorescent Polymer Films for Optical Oxygen Sensors, Biosensors & Bioelectron. 7 (1991) 199.

    Article  Google Scholar 

  8. Papkovsky D. B., Ponomarev G. V. and Wolfbeis O. S., Longwave Luminescent Porphyrin Probes, Spectrochim. Acta Part A 52 (1996) 1629.

    Article  Google Scholar 

  9. Papkovsky D. B., Ponomarev G. V., Trettnak W. and O’Leary P., Phosphorescent Complexes of Porphyrin Ketones: Optical Properties and Application to Oxygen Sensing, Anal. Chem. 67 (1995) 4112.

    Article  CAS  Google Scholar 

  10. Liu Y. M., Pereiro-Garcia R., Sanz-Medel A., Evaluation of Some Immobilized Room-Temperature Phosphorescent Metal Chelates as Sensing Materials for Oxygen, Anal. Chem. 66 (1994) 836.

    Article  CAS  Google Scholar 

  11. Charlesworth J. M., Optical Sensing of Oxygen Using Phosphorescence Quenching, Sensors & Actuators B22 (1994) 1.

    Article  CAS  Google Scholar 

  12. Lakowicz, J. R., Principles of Fluorescence Spectroscopy, Plenum Press, New York, 1984.

    Google Scholar 

  13. Leiner M. J. P. and Wolfbeis O. S., pH Sensors, in: Fiber Optic Chemical Sensors and Biosensors, Wolfbeis O. S. (ed.), CRC Press, Boca Raton, vol. 1, chapter 8.

    Google Scholar 

  14. Charlton S. C., Fleming R. L. and Zipp A., Solid-Phase Colorimetric Determination of Potassium, Clin. Chem. 28 (1982) 1857.

    CAS  Google Scholar 

  15. He H., Uray G. and Wolfbeis O. S., Enantio-selective Optodes, Anal. Chim. Acta, 246 (1991) 251.

    Article  CAS  Google Scholar 

  16. Mohr G. J. and Wolfbeis O. S., Optical Sensing of Anions via Polarity-Sensitive Dyes: a Bulk Sensor Membrane for Nitrate, Anal. Chim. Acta, 316 (1995) 239.

    Article  CAS  Google Scholar 

  17. Czarnik A. W. (ed.) Fluorescent Chemosensors for Ion and Molecule Recognition, ACS Symp. Ser. 538, Am. Chem. Soc., Washington (DC), 1992.

    Google Scholar 

  18. Desvergne J. P., Fages F., Bouas-Laurent H., Marsau P., Tunable Photoresponsive Supramolecular Systems, Pure Appl. Chem. 64 (1992) 1231.

    Article  CAS  Google Scholar 

  19. Bryan A. J., de Silva A. P., de Silva S. A., Rupasinghe R. A. D. and Sandanayake K. R. A. S., Photo-induced Electron Transfer as a General Design Logic for Fluorescent Molecular Sensors for Cations, Biosensors 4 (1989) 169.

    Article  CAS  Google Scholar 

  20. De Silva A. P., Gunaratne H. Q. N., Habib-Jiwan J. P., McCoy C. P., Rice T. E., and Soumillion J. P., New Fluorescent Model Compounds for the Study of Photo-induced Electron Transfer: The Influence of a Molecular Electric Field in the Excited State, Angew. Chem. Int. Ed. Engl., 34, (1995), 1728–1731; and refs. cited

    Article  Google Scholar 

  21. DeSilva A. P., Gunaratne H.Q.N., and McCoy C.P., A Molecular Photoionic AND Gate Based on Fluorescent Signalling, Nature 364 (1993) 42.

    Article  Google Scholar 

  22. Werner T., Huber Ch., Wolfbeis O. S. and DeSilva, A. P., unpublished results, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wolfbeis, O.S., Huber, C., Werner, T. (1997). Solid State Supramolecular Optical Sensors. In: Desvergne, J.P., Czarnik, A.W. (eds) Chemosensors of Ion and Molecule Recognition. NATO ASI Series, vol 492. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3973-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3973-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5759-2

  • Online ISBN: 978-94-011-3973-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics