Skip to main content

Chemosensing of Monocyclic and Bicyclic Aromatic Hydrocarbons by Supramolecular Active Sites

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 492))

Abstract

We present a general strategy for molecular chemosensing. The overall approach relies on the design of supramolecules containing a docking site for an analyte and a photoactive site capable of emitting visible light. By manipulating the fundamental parameters governing energy flow within the supramolecule, we can trigger bright luminescence from the photoactive center upon the molecular recognition of analyte at the binding site. We demonstrate the utility of this approach by describing our efforts to design modified cyclodextrin supramolecules, which detect monocyclic and bicyclic aromatics with the appearance of a visible luminescence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Göpel, W., Hesse, J. and Zemel, J.N. (eds.) (1988) Sensors: A Comprehensive Survey. Fundamentals and General Aspects, VCH Publishers, New York, Vol. 1.

    Google Scholar 

  2. “Optical Sensors”, Janata, J. (1988) Principles of Chemical Sensors, Plenum Press, New York, Ch. 5.

    Google Scholar 

  3. Wolfbeis, O.S. (ed.) (1991) Fiber-Optic Chemical Sensors and Biosensors, CRC Press, Boca Raton, FL, Vol. 1.

    Google Scholar 

  4. Wagner, E., Dändliker, R. and Spenner, K, (eds.) (1991) Sensors: A Comprehensive Survey. Optical Sensors, VCH Publishers, New York, Vol. 6.

    Google Scholar 

  5. “Optical Fiber Sensors”, Rogers, A.J. (1992) in W. Göpel, J. Hesse and J.N. Zemel (eds.), Sensors: A Comprehensive Survey. Fundamentals and General Aspects, Optical Sensors, Plenum Press, New York, Vol. 6, Ch. 15.

    Google Scholar 

  6. Goldberg, M.C. (ed.) (1989) Luminescence Applications in Biological, Chemical Environment and Hydrological Sciences, ACS Symposium Series 383, American Chemical Society, Washington D.C..

    Google Scholar 

  7. Wolfbeis, O.S. (ed.) (1993) Fluorescence Spectroscopy, New Methods and Applications, Springer-Verlag, Berlin.

    Google Scholar 

  8. “Quenching and Sensitization Processes of Coordination Compounds”, Balzani, V., Moggi, L., Manfrin, M.F. and Bolletta, F. (1975) Coord. Chem. Rev. 15, 321.

    Article  CAS  Google Scholar 

  9. “Fluorescent PET Sensors with Targeting/Anchoring Modules as Molecular Versions of Submarine Periscopes for Mapping Membrane-bound Protons”, Bissell, R.A., Bryan, A.J., deSilva, A.P. and McCoy, C.P. (1994) J. Chem. Soc., Chem. Commun. 405.

    Google Scholar 

  10. “Chemical Communication in Water Using Fluorescent Chemosensors”, Czarnik, A.W. (1994) Acc. Chem. Res. 27, 302.

    Article  CAS  Google Scholar 

  11. “1,2-Bis(2-aminophenoxy)ethane-N,N,N’, N’-tetraacetic Acid Conjugates Used to Measure Intracellular Ca2+ Concentration”, Kuhn, M.A. in A.W. Czarnik (ed.), (1993) Fluorescent Chemosensors for Ion and Molecule Recognition, ACS Symposium Series 538, American Chemical Society, Washington D.C., Ch. 10.

    Google Scholar 

  12. “Molecular Recognition of Carboxylate Ions Based on the Metal-Ligand Interaction and Signaled through Fluorescence Quenching”, De Santis, G., Fabbrizzi, L., Licchelli, M., Poggi, A. and Taglietti, A. (1996) Angew. Chem., Int. Ed. Engl. 35, 202.

    Article  Google Scholar 

  13. (a) “Synthesis and Study of Crown Ethers with Alkali-Metal-Enhanced Fluorescence: Quest for Flashy Crowns”, Sousa, L.R., Son, B., Trehearne, T.E., Stevenson, R.W., Ganion, S.J., Beeson, B.E., Barnell, S., Mabry, T.E., Yao, M., Chakrabarty, C., Bock, P.L., Yoder C.C. and Pope, S. (1993) in A.W. Czarnik (ed.), Fluorescent Chemosensors for Ion and Molecule Recognition, ACS Symposium Series 538, American Chemical Society, Washington D.C., Ch. 2. (b) “Ion Recognition Detected by Changes in Photoinduced Charge or Energy Transfer”, Valeur, B., Bourson J. and Pouget, J. ibid, Ch. 3. (c) “Fluorescent Photoinduced Electron-Transfer Sensors: The Simple Logic and Its Extensions”, Bissell, R.A., deSilva, A.P., Gunaratne, H.Q.N., Lynch, P.L.M., McCoy, C.P., Maguire, G.E.M. and Sandanayake, K.R.A.S. ibid, Ch. 4. (d) “Tunable Fluorescence of Some Macrocyclic Anthracenophanes”, Bouas-Laurent, H., Desvergne, J.-P., Fages, F. and Marsau, P. ibid, Ch. 5.

    Google Scholar 

  14. “Sensors and Switches from Supramolecular Chemistry”, Fabbrizzi, L. and Poggi, A. (1995) Chem. Soc. Rev. 24, 197.

    Article  CAS  Google Scholar 

  15. “Fluorescent Sensors of Molecular Recognition. Modified Cyclodextrins Capable of Exhibiting Guest-Responsive Twisted Intramolecular Charge Transfer Fluorescence”, Hamasaki, K., Ikeda, H., Nakamura, A., Ueno, A., Toda, F., Suzuki I. and Osa, T. (1993) J. Am. Chem. Soc. 115, 5035.

    Article  CAS  Google Scholar 

  16. (a) “Fluorescent Saccharide Receptors: A Sweet Solution to the Design, Assembly and Evaluation of Boronic Acid Derived PET Sensors”, James, T.D., Linnane, P., Shinkai, S. (1996) J. Chem. Soc., Chem. Commun. 281. (b) “Chiral Discrimination of Monosaccharides Using a Fluorescent Molecular Sensor”, James, T.D., Sandanayake, K.R.A.S, Shinkai, S. (1995) Nature 374, 345.

    Article  CAS  Google Scholar 

  17. Turro, N.J. (1978) Modern Molecular Photochemistry, Benjamin/Cummings, Menlo Park, California.

    Google Scholar 

  18. Ferraudi, G.J., (1988) Elements of Inorganic Photochemistry, Wiley-Interscience, New York, Ch. 1.

    Google Scholar 

  19. (a) “A Turn on For Optical Sensing”, Mortellaro, M.A. and Nocera, D.G. (1996) Chem Tech 26, 17. (b) “Not Just a Pretty Shape”, Nocera, D.G. (1996) New Scientist 149, 24. (c) “Luminescence from Supramolecules Triggered by the Molecular Recognition of Substrates”, Pikramenou, Z., Yu, J.-a, Lessard, R.B., Ponce, A., Wong, P.A. and Nocera, D.G. (1994) Coord. Chem. Rev. 132, 181. (d) “Substrate Induced Phosphorescence from Cyclodextrin Lumophore Host-Guest Complexes”, Hartmann, W.K., Gray, M.H.B., Ponce, A., Nocera, D.G. and Wong, P.A. (1996) Inorg. Chim. Acta 243, 239. (e) “Intense Phosphorescence Triggered by Alcohols upon Formation of a Cyclodextrin Ternary Complex”, Ponce, A., Wong, P.A., Way, J.J. and Nocera, D.G. (1993) J. Phys. Chem. 97, 11137. (f) “Regioisomeric Control of the Excited State Processes of Bromonaphthalene-Modified Cyclodextrins”, Mortellaro, M.A., Hartmann, W.K. and Nocera, D.G. (1996) Angew. Chem., Int. Ed. Engl. 35, 1945.

    CAS  Google Scholar 

  20. “A New Method for the Detection and Measurement of Polyaromatic Carcinogens and Related Compounds by DNA Intercalation”, Harvath, J.J., Gueguetchkeri, M., Gupta, A., Penumatchu, D. and Weetall, H.H. (1995) in K.R. Rogers, A. Mulchandani and W. Zhou (eds.), Biosensor and Chemical Sensor Technology, ACS Symposium Series 613, American Chemical Society, Washington, D.C., Ch. 5.

    Google Scholar 

  21. “Luminescent Probes”, Bünzli, J.-C.G. (1988) in J.-C.G. Bünzli and G.R. Choppin (eds.), Lanthanide Probes in Life, Chemical and Earth Sciences, Elsevier, Amsterdam, Ch. 7, p. 219.

    Google Scholar 

  22. (a) Balzani, V. and Scandola, F. (1991) Supramolecular Photochemistry, Ellis Horwood, West Sussex, England, (b) “Supramolecular Photochemistry”, Balzani, V. (1990) Pure Appl. Chem. 62, 1099.

    Google Scholar 

  23. (a) “Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices”, Lehn, J.-M. (1988) Angew. Chem., Int. Ed. Engl. 27, 89. (b) “Supramolecular Chemistry-Scope and Perspectives: Molecules-Supermolecules-Molecular Devices”, Lehn, J.-M. (1988) J. Incl. Phenom. Mol. Recog. 6, 351.

    Article  Google Scholar 

  24. “Lanthanide Ion Luminescence in Coordination Chemistry and Biochemistry”, Horrocks, W. DeW. Jr. and Albin, M. (1983) in S.J. Lippard (ed.), Prog. Inorg. Chem., John Wiley & Sons, New York, Vol. 31, p. 1.

    Google Scholar 

  25. “Determination of Long Distance Intramolecular Triplet Energy Transfer Rates. A Quantitative Comparison with Electron Transfer”, Closs, G.R., Piotrowiak, P., Maclnnis, J.M. and Fleming, G.R. (1988) J. Am. Chem. Soc. 110, 2652.

    Article  CAS  Google Scholar 

  26. “Direct Observation of Intramolecular Energy Transfer from a β-Diketonate to Terbium(III) Ion Encapsulated in a Cryptand”, Yu, J.-a, Lessard, R.B., Bowman, L.E. and Nocera, D.G. (1991) Chem. Phys. Lett. 187, 263.

    Article  Google Scholar 

  27. “Cyclodextrins as Building Blocks for Supramolecular Structures and Functional Units”, Wenz, G. (1994) Angew. Chem., Int. Ed. Engl. 33, 803.

    Article  Google Scholar 

  28. “Biomimetic Chemistry and Artificial Enzymes: Catalysis by Design”, Breslow, R. (1995) Acc. Chem. Res. 28, 146.

    Article  CAS  Google Scholar 

  29. “Cyclodextrin Catalysis as a Model for Enzyme Action”, Tabushi, I. (1982) Acc. Chem. Res. 15, 66.

    Article  CAS  Google Scholar 

  30. “Luminescent Supramolecular Architectures: A Cyclodextrin Modified with a Europium(III) Crown Swing”, Pikramenou, Z. and Nocera, D.G. (1992) Inorg. Chem. 31, 532.

    Article  CAS  Google Scholar 

  31. “Cyclodextrin Flexibly Capped with Metal Ion”, Tabushi, I., Shimizu, N., Sugimoto, T., Shiozuka, M. and Yamamura, K. (1977) J. Am. Chem. Soc. 99, 7100.

    Article  CAS  Google Scholar 

  32. “Fluorescence Enhancement of Benzene Derivatives by Forming Inclusion Complexes with β-Cyclodextrin in Aqueous Solutions”, Hoshino, M., Imamura, M., Ikehara, K. and Hama, V. (1981) J. Phys. Chem. 85, 1820.

    Article  CAS  Google Scholar 

  33. “Complexation of Carboxylic Acids and Anions by Alpha and Beta Cyclodextrins”, Gelb, R. and Schwartz, L.M. (1989) J. Incl. Phenom. Mol. Recog. 7, 465.

    Article  CAS  Google Scholar 

  34. “Diaza-Crown Ether Capped Cyclodextrin. A Receptor with Two Recognition Sites”, Willner, I. and Goren, Z. (1983) J. Chem. Soc., Chem. Commun. 1469.

    Google Scholar 

  35. “6-Deoxy-6-N-histamino-β-cyclodextrin Copper(II) Complex, a New Enantioselective Receptor for Aromatic Amino Acids”, Impellizzeri G., Maccarrone, G., Rizzarelli, G., Vecchio, G., Corradini, R. and Marchelli, R. (1991) Angew. Chem., Int. Ed. Eng. 30, 1348.

    Article  Google Scholar 

  36. “Synthesis of a Cradle Cyclodextrin”, Pikramenou, Z., Johnson, K.M. and Nocera, D.G. (1993) Tetrahedron Lett. 34, 3531.

    Article  CAS  Google Scholar 

  37. “A Supramolecular Chemosensor for Aromatic Hydrocarbons”, Mortellaro, M.A. and Nocera, D.G. (1996) J. Am. Chem. Soc. 118, 7414.

    Article  CAS  Google Scholar 

  38. “Specific Bifunctionalization on Cyclodextrin”, Tabushi, I., Shimokawa, K. and Fujita, K. (1977) Tetrahedron Lett. 18, 1527.

    Article  Google Scholar 

  39. “Luminescent Polyaminocarboxylate Chelates of Terbium and Europium: The Effect of Chelate Structure”, Li, M. and Selvin, P.R. (1995) J. Am. Chem. Soc. 117, 8132.

    Article  CAS  Google Scholar 

  40. (a) “Improved Acylation Rates within Cyclodextrin Complexes from Flexible Capping of the Cyclodextrin and from Adjustment of the Substrate Geometry”, Breslow, R., Czarniecki, M.F., Emert, J. and Hamaguchi, H. (1980) J. Am. Chem. Soc. 102, 762. (b) “Modification of the Cavity of β-Cyclodextrin by Flexible Capping”, Emert, J. and Breslow, R. (1975) J. Am. Chem. Soc. 97, 670.

    Article  CAS  Google Scholar 

  41. (a) “Hydrolysis of Phenyl Acetates with Capped β-Cyclodextrins: Reversion from Meta to Para Selectivity”, Fujita, K., Shinoda, A., Imoto, T. (1980) J. Am. Chem. Soc. 102, 1161. (b) “Meta/Para-Selectivity Variation by Sulfide/Sulfoxide Conversion of 6-Substituted β-Cyclodextrin. Hydroylsis of Nitrophenyl Acetates”, Fujita, K., Ejima, S., Ueda, T., Imoto, T. and Schulten, H.-R. (1984) Tetrahedron Lett. 25, 3711.

    Article  CAS  Google Scholar 

  42. “Capped Cyclodextrin”, Tabushi, I., Shimokawa, K., Shimiza, N., Shirakata, H. and Fujita, K. (1976) J. Am. Chem. Soc. 98, 7855.

    Article  CAS  Google Scholar 

  43. Lehn, J.-M. (1995) Supramolecular Chemistry, VCH Publishers, Weinheim.

    Book  Google Scholar 

  44. “Molecular Recognition by Self-Assembled Monolayers of Cavitand Receptors”, Schierbaum, K.D., Weiss, T., Thoden van Velzen, E.U., Engbersen, J.F.J., Reinhoudt, D.N. and Göpel, W. (1994) Science 265, 1413.

    Article  CAS  Google Scholar 

  45. “Organic Chemistry within Ceramic Matrices: Doped Sol-Gel Materials”, Avnir, D. (1995) Acc. Chem. Res. 28, 328.

    Article  CAS  Google Scholar 

  46. “The Sol-Gel Process”, Hench, L.L. and West, J.K. (1990) Chem. Rev. 90, 33.

    Article  CAS  Google Scholar 

  47. “Light Harvesting Molecular Assemblies in the Design of Highly Luminescent Sol-Gel Derived Glasses”, Dulebohn, J.I., Van Vlierberge, B., Berglund, K.A., Lessard, R.B., Yu, J.-a and Nocera, D.G. (1990) Mat. Res. Soc. Symp. Proc. 180, 733.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hartmann, W.K., Mortellaro, M.A., Nocera, D.G., Pikramenou, Z. (1997). Chemosensing of Monocyclic and Bicyclic Aromatic Hydrocarbons by Supramolecular Active Sites. In: Desvergne, J.P., Czarnik, A.W. (eds) Chemosensors of Ion and Molecule Recognition. NATO ASI Series, vol 492. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3973-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3973-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5759-2

  • Online ISBN: 978-94-011-3973-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics