Skip to main content

Physiological properties of copper and zinc

  • Chapter

Abstract

The properties of metals in biological compartments depend not only on their characteristics, but also on those of the ligand sites which interact with them. From this interaction derive properties and structural characters which confer a functional role or roles on the biological molecules and compartments in which the metals are present. The various distributions and locations of the ligands in organs and structures may confer often very different but interacting roles on the metals. Therefore, the physiological properties of metal ions, in this case copper and zinc, must be described with reference to the systems in which they are involved. Nor is it surprising that the natural or experimentally induced depressed state of metals provides the first indications of their putative effects, and data regarding functional roles are often closely linked and mingled with those related to a deficient state. Trace elements such as copper and zinc have important functions in both humans and animals, are known to be essential, and must be available in adequate amounts depending on absorption, distribution and storage in a regulated system which obviously includes excretory mechanisms. These aspects therefore form the basis of all functional roles and physiological properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulla M, Chmielnicka J. New aspects on the distribution and metabolism of essential trace elements after dietary exposure to toxic metals. Biol Trace Elem Res. 1990;23:25–53.

    Article  CAS  Google Scholar 

  2. Agte V, Chiplonkar S, Joshi N, Paknikar K. Apparent absorption of copper and zinc from compositive vegetarian diets in young Indian men. Ann Nutr Metab. 1994;38:13–19.

    Article  PubMed  CAS  Google Scholar 

  3. Ladefoged K, Jarnum S. Zinc deficiency syndrome during parenteral nutrition in humans. Metal Ions Biol Syst. 1983;15:415–438.

    Google Scholar 

  4. Forbes RM, Erdman JW. Bioavailability of trace mineral elements. Annu Rev Nutr. 1983;3:213–231.

    Article  PubMed  CAS  Google Scholar 

  5. Lö B. Intestinal absorption of zinc. In: Mills CF, ed. Zinc in Human Biology. London: Springer-Verlag; 1989:33–55.

    Google Scholar 

  6. Hempe JM, Cousins RJ. Cysteine-rich intestinal protein and intestinal metallothionein: an inverse relationship as a conceptual model for zinc absorption in rats. J Nutr. 1992;122:89–95.

    PubMed  CAS  Google Scholar 

  7. Sandström B, Lönnerdal B. Promoters and antagonists of zinc absorption. In: Mills CF, ed. Zinc in Human Biology. London: Springer-Verlag; 1989:57–77.

    Google Scholar 

  8. Jackson MJ. Physiology of zinc: general aspects. In: Mills CF, ed. Zinc in Human Biology. London:Springer-Verlag; 1989:1–14.

    Google Scholar 

  9. Cousins RJ. Systemic transport of zinc. In: Mills CF, ed. Zinc in Human Biology. London: Springer-Verlag; 1989:79–83.

    Google Scholar 

  10. Taylor JA, Simons TJB. The mechanism of zinc uptake by cultured rat liver cells. J Physiol. 1994;474:55–64.

    PubMed  CAS  Google Scholar 

  11. De Kok J, Van Der Schoot C, Veldhuizen M, Wolterbeek HT. The uptake of zinc by erythrocytes under near-physical conditions. Biol Trace Elem Res. 1993;38:13–26.

    Article  PubMed  Google Scholar 

  12. Bobilya DJ, Briske-Anderson M, Reeves PG. Zinc transport into endothelial cells is a facilitated process. J Cell Physiol. 1992; 151:1–7.

    Article  PubMed  CAS  Google Scholar 

  13. Tibaduiza EC, Bobilya DJ. Zinc transport across an endothelium includes vesicular cotransport with albumin. J Cell Physiol. 1996;167:539–547.

    Article  PubMed  CAS  Google Scholar 

  14. Gachot B, Tauc M, Morat L, Poujeol P. Zinc uptake by proximal cells isolated from rabbit kidney: effect of cysteine and histidine. Pflügers Arch Physiol. 1991;419:583–587.

    Article  CAS  Google Scholar 

  15. Golden BE. Zinc in cell division and tissue growth: physiological aspects. In: Mills CF, ed. Zinc in Human Biology. London: Springer-Verlag; 1989:119–128.

    Google Scholar 

  16. Luecke RW, Ruksan BE, Baltzer BV. The zinc content of blood serum and bone as indices of dietary zinc adequacy in the rat. In: Mills CF, ed. Trace Element Metabolism in Animals. Edinburgh and London: E & S Livingstone; 1970:471–473.

    Google Scholar 

  17. King JC Assessment of zinc status. J Nutr. 1990;120:1474–1479.

    PubMed  CAS  Google Scholar 

  18. Hunt JR, Johnson LK. Dietary protein as egg albumin: effects on bone composition, zinc bioavailability and zinc requirements of rats assayed by a modified broken-line model. J Nutr. 1992;122:161–169.

    PubMed  CAS  Google Scholar 

  19. Albergoni V, Piccinni E. Biological response to trace metals and their biochemical effects. In: Leppard GG, ed. Trace Element Speciation in Surface Waters and its Ecological Implications. New York: Plenum Publishing Corporation; 1983:159–175.

    Chapter  Google Scholar 

  20. Williams RJP. An introduction to the biochemistry of zinc. In: Mills CF, ed. Zinc in Human Biology. London: Springer-Verlag; 1989:15–31.

    Google Scholar 

  21. Coleman JE. Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem. 1992;61:897–946.

    Article  PubMed  CAS  Google Scholar 

  22. Bremner I, May PM. Systemic interactions of zinc. In: Mills CF, ed. Zinc in Human Biology. London: Springer-Verlag; 1989:95–108.

    Google Scholar 

  23. Kirchgessner M, Weigand E. Zinc absorption and excretion in relation to nutrition. Metal Ions Biol Syst. 1983;15:319–361.

    CAS  Google Scholar 

  24. Vallee BL, Auld DS. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry. 1990;29:5647–5659.

    Article  PubMed  CAS  Google Scholar 

  25. Wu FYH, Wu CW. Zinc in DNA replication and transcription. Annu Rev Nutr. 1987;7:251–272.

    Article  PubMed  CAS  Google Scholar 

  26. Willson RL. Zinc and iron in free radical pathology and cellular control. In: Mills CF, ed. Zinc in Human Biology. London: Springer-Verlag; 1989:147–171.

    Google Scholar 

  27. Chvapil M, Ryan JN, Zukoski CF. Effect of zinc on lipid peroxidation in liver microsomes and mitochondria. Proc Soc Exp Biol Med. 1972;141:150–153.

    PubMed  CAS  Google Scholar 

  28. Bettger WJ, O’Dell BL. A critical physiological role of zinc in the structure and function of biomembranes. Life Sci. 1981;28:1425–1438.

    Article  PubMed  CAS  Google Scholar 

  29. Ludwig JC, Chvapil M. Reversible stabilization of liver lysosomes by zinc ions. J Nutr. 1980;110:945–953.

    PubMed  CAS  Google Scholar 

  30. Avery RA, Bettger WJ. Zinc deficiency alters the protein composition of the membrane skeleton but not the extractability or oligomeric form of spectrin in rat erythrocyte membranes. J Nutr. 1992;122:428–434.

    PubMed  CAS  Google Scholar 

  31. Jay M, Stuart SM, McClain CJ, Palmieri DA, Butterfield DA. Alterations in lipid membrane fluidity and the physical state of cell-surface sialic acid in zinc-deficient rat erythrocyte ghosts. Biochim Biophys Acta. 1987;897:507–511.

    Article  PubMed  CAS  Google Scholar 

  32. Hennig B, Wang Y, Ramasamy S, McClain CJ. Zinc deficiency alters barrier function of cultured porcine endothelial cells. J Nutr. 1992;122:1242–1247.

    PubMed  CAS  Google Scholar 

  33. Rajagopalan S, Winter CC, Wagtmann N, Long EO. The Ig-related killer cell inhibitory receptor binds zinc and requires zinc for recognition of HLA-C on target cells. J Immunol. 1995;155:4136–4143.

    Google Scholar 

  34. Fraker PJ, Gershwin ME, Good RA, Prasad A. Interrelationships between zinc and immune function. Fed Proc. 1986;45:1474–1479.

    PubMed  CAS  Google Scholar 

  35. Good RA. A note on zinc and immunocompetence. In: Mills CF, ed. Zinc in Human Biology. London: Springer-Verlag; 1989:221–223.

    Google Scholar 

  36. Keen CL, Gershwin ME. Zinc deficiency and immune function. Annu Rev Nutr. 1990;10:415–431.

    Article  PubMed  CAS  Google Scholar 

  37. Emery MP, Browning JD, O’Dell BL. Impaired hemostasis and platelet function in rats fed low zinc diets based on egg white protein. J Nutr. 1990;120:1062–1067.

    PubMed  CAS  Google Scholar 

  38. Howell GA, Welch MG, Frederickson CJ. Stimulation-induced uptake and release of zinc in hippocampal slices. Nature. 1984;308:736–738.

    Article  PubMed  CAS  Google Scholar 

  39. Mayer ML, Vyklicky Jr L, Westbrook GL. Modulation of excitatory amino acid receptors by group IIB metal cations in cultured mouse hippocampal neurones. J Physiol. 1989;415:329–350.

    PubMed  CAS  Google Scholar 

  40. Xie X, Hider RC, Smart TG. Modulation of GABA-mediated synaptic transmission by endogenous zinc in the immature rat hippocampus in vitro. J Physiol. 1994;478:75–86.

    PubMed  CAS  Google Scholar 

  41. Winegar BD, Lansman JB. Voltage-dependent block by zinc of single calcium channels in mouse myotubes. J Physiol. 1990;425:563–578.

    PubMed  CAS  Google Scholar 

  42. Donaldson J, St Pierre T, Minnich JL, Barbeau A. Determination of Na+, K+, Mg2+, Zn2+, and Mn2+ in rat brain regions. Can J Biochem. 1973;51:87–92.

    PubMed  CAS  Google Scholar 

  43. Chapman DB, Way EL. Metal interactions with opiates. Annu Rev Pharmacol Toxicol. 1980;20:553–579.

    Article  PubMed  CAS  Google Scholar 

  44. Stengaard-Pedersen K, Friedens K, Larseson LI. Inhibition of opiate receptor by zinc ions: possible physiological importance in the hippocampus. Peptides. 1981;2(suppl.l):27–35.

    Article  PubMed  CAS  Google Scholar 

  45. Stengaard-Pedersen K. Inhibition of enkephalin binding to opiate receptor by zinc ions: possible physiological importance in brain. Acta Pharmacol Toxicol. 1982;50:213–220.

    Article  CAS  Google Scholar 

  46. Vaillancourt SJ, Allen JC. Glucocorticoid effects on zinc transport into colostrum and milk of lactating cows. Biol Trace Elem Res. 1991;30:185–196.

    Article  PubMed  CAS  Google Scholar 

  47. Favier AE. Hormonal effects of zinc on growth in children. Biol Trace Elem Res. 1992;32:383–398.

    Article  PubMed  CAS  Google Scholar 

  48. Favier AE. The role of zinc in reproduction. Hormonal mechanisms. Biol Trace Elem Res. 1992;32:363–382.

    Article  PubMed  CAS  Google Scholar 

  49. Neve J. Clinical implications of trace elements in endocrinology. Biol Trace Elem Res. 1992;32:173–185.

    Article  PubMed  CAS  Google Scholar 

  50. Vallee BL, Falchuk KH. The biochemical basis of zincphysiology. Physiol Rev. 1993;73:79–118.

    Article  PubMed  CAS  Google Scholar 

  51. Bloomer LC, Lee GR. Normal hepatic copper metabolism. In: Powell LW, ed. Metals and the Liver. New York and Basel: Marcel Dekker Inc; 1978:179–239.

    Google Scholar 

  52. Sarkar B. Transport of copper. Metal Ions Biol Syst. 1981;12:233–281.

    CAS  Google Scholar 

  53. Gahl WA. Lysosomal membrane transport in cellular nutrition. Annu Rev Nutr. 1989;9:39–61.

    Article  PubMed  CAS  Google Scholar 

  54. Frieden E. Ceruloplasmin: a multifunctional metalloprotein of vertebrate plasma. Metal Ions Biol Syst. 1981;13:117–142.

    CAS  Google Scholar 

  55. Vulpe CD, Packman S. Cellular copper transport. Annu Rev Nutr. 1995;15:293–322.

    Article  PubMed  CAS  Google Scholar 

  56. Harford C, Sarkar B. Neuromedin C binds Cu(II) and Ni(II) via the atcun motif: implications for the CNS and cancer growth. Biochem Biophys Res Commun. 1995;209:877–882.

    Article  PubMed  CAS  Google Scholar 

  57. Cousins RJ. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev. 1985;65:238–309.

    PubMed  CAS  Google Scholar 

  58. DiSilvestro RA, Cousins RJ. Physiological ligands for copper and zinc. Annu Rev Nutr. 1983;3:261–288.

    Article  PubMed  CAS  Google Scholar 

  59. Sugawara N, Sato M, Yuasa M, Sugawara C. Biliary-excretion of copper, metallothionein, and glutathione into Long-Evans Cinnamon rats — a convincing animal-model for Wilson disease. Biochem Mol Med. 1995;55:38–42.

    Article  PubMed  CAS  Google Scholar 

  60. Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev. 1994;74:139–162.

    PubMed  CAS  Google Scholar 

  61. Nelson SK, Huang CJ, Mathias MM, Allen KGD. Copper-marginal and copper-deficient diets decrease aortic prostacyclin production and copper-dependent superoxide dismutase activity, and increase aortic lipid peroxidation in rats. J Nutr. 1992;122:2101–2108.

    PubMed  CAS  Google Scholar 

  62. Rayssiguier Y, Gueux E, Bussiere L, Mazur A. Copper deficiency increases the susceptibility of lipoproteins and tissues to peroxidation in rats. J Nutr. 1993;123:1343–1348.

    PubMed  CAS  Google Scholar 

  63. Al-Othman AA, Rosenstein F, Lei KY. Copper deficiency alters plasma pool size, percent composition and concentration of lipoprotein components in rats. J Nutr. 1992; 122:1199–1204.

    PubMed  CAS  Google Scholar 

  64. Dollwet HHA, Sorenson JRJ. Roles of copper in bone maintenance and healing. Biol Trace Elem Res. 1988;18:39–48.

    Article  PubMed  CAS  Google Scholar 

  65. Prasad AS. Copper. In: Wintrobe MM, ed. Trace Elements and Iron in Human Metabolism. Chichester: John Wiley & Sons; 1978:17–54.

    Google Scholar 

  66. Windhauser MM, Kappel LC, McClure J, Hegsted M. Suboptimal levels of dietary copper vary immunoresponsiveness in rats. Biol Trace Elem Res. 1991;30:205–217.

    Article  PubMed  CAS  Google Scholar 

  67. Roberts DW, Kishore V, Barnett JB, Benson RW, Sorenson JRJ. Modulation of immune function as a consequence of copper deprivation. In: Sorenson JRJ, ed. Biology of Copper Complexes. Clifton: Humana Press; 1987:551–563.

    Chapter  Google Scholar 

  68. Underwood EJ. Copper. In: Trace Elements in Humans and Animal Nutrition. 4th edn. New York: Academic Press; 1977:56–108.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Albergoni, V. (1998). Physiological properties of copper and zinc. In: Rainsford, K.D., Milanino, R., Sorenson, J.R.J., Velo, G.P. (eds) Copper and Zinc in Inflammatory and Degenerative Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3963-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3963-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5757-8

  • Online ISBN: 978-94-011-3963-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics