Skip to main content

Copper and zinc compounds and cell surface interactions

  • Chapter
  • 118 Accesses

Abstract

The essential requirement of copper and zinc for normal bone and cartilage development, and the efficacy of copper and zinc compounds as anti-inflammatory and anti-arthritic agents have been well established, based primarily on a wealth of evidence from studies of dietary copper and zinc deficiency and supplementation in laboratory animals and man [1–5]. Surprisingly few studies have, however, focused on the mechanisms of action of copper and zinc at the molecular level. The aim of this brief review is to present current knowledge of the effects of copper and zinc at the cell surface, and to discuss mechanisms whereby modification of cellular interactions by these trace metals may play a role in inflammatory and degenerative diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Underwood EJ. Trace Elements in Human and Animal Nutrition. 3rd edn. New York: Academic Press; 1977.

    Google Scholar 

  2. Meyer H. Kupferstoffwechsel und Kupferbedarf beim Pferd. Übers Tierernährg. 1994;22:363–394.

    CAS  Google Scholar 

  3. Milanino R, Moretti U, Marrella M, Pasqualicchio M, Gasperini R, Velo GP. Copper and zinc in the development and control of inflammation. In: Berthon G, ed. Handbook on Metal-Ligand Interactions on Biological Fluids, Vol.2. New York: Marcel Dekker Inc.; 1995:886–899.

    Google Scholar 

  4. Frigo A, Bambara LM, Concari E et al. Concerning the potential therapeutic value of zinc in rheumatoid arthritis and psoriatic arthritis. In: Milanino R, Rainsford KD, Velo GP, eds. Copper and Zinc in Inflammation. Dordrecht: Kluwer Academic Publishers; 1989:133–142.

    Chapter  Google Scholar 

  5. Sorenson JRJ. Copper complexes offer a physiological approach to treatment of chronic diseases. In: Ellis GP, West GB, eds. Progress in Medicinal Chemistry. Amsterdam: Elsevier; 1989:437–568.

    Google Scholar 

  6. Fraker PJ. Zinc deficiency: a common immunodeficiency state. Surv Immunol Res. 1983;2:155–163.

    PubMed  CAS  Google Scholar 

  7. Miller GG, Strittmatter WJ. Identification of human T cells that require zinc for growth. Scand J Immunol. 1992;36:269–277.

    Article  PubMed  CAS  Google Scholar 

  8. Weiyi Y. Einfluss von Zinkmangel auf die Immunoglobulinproduktion beim Rind [dissertation]. Hannover, Germany: Tierärztliche Hochschule; 1992.

    Google Scholar 

  9. Fernandes G, Nair M, Onoe K, Tanaka T, Floyd R, Good RA. Impairment of cell-mediated immunity functions by dietary zinc deficiency in mice. Proc Natl Acad Sci USA. 1979;76:457–461.

    Article  PubMed  CAS  Google Scholar 

  10. Jones DG, Suttle NF. Some effects of copper deficiency on leucocyte function in sheep and cattle. Res Vet Sci. 1981;31:151–156.

    PubMed  CAS  Google Scholar 

  11. Niederman CN, Blodgett D, Eversole D, Schurig GG, Thatcher CD. Effect of copper and iron on neutrophil function and humoral immunity of gestating beef cattle. J Am Vet Med Assoc. 1994;204:1796–1800.

    PubMed  CAS  Google Scholar 

  12. Lukasewycz OA, Prohaska JR. The immune response in copper deficiency. Ann NY Acad Sci. 1990;587:147–159.

    PubMed  CAS  Google Scholar 

  13. Scuderi P. Differential effects of copper and zinc on human peripheral blood monocyte cytokine secretion. Cell Immunol. 1990;126:391–405.

    Article  PubMed  CAS  Google Scholar 

  14. Pasqualicchio M, Davies ME, Velo GP. Effects of copper and zinc on chondrocyte mononuclear cell adhesion via ICAM-1/CD18 interactions. Inflammopharmacology. 1995;3:35–48.

    Article  CAS  Google Scholar 

  15. Dustin ML, Rothlein R, Bhan AK, Dinarello CA, Springer TA. Induction by IL-1 and interferon-gamma: tissue distribution, biochemistry and function of a natural adherence molecule (ICAM-l). J Immunol. 1986;137:245–254.

    PubMed  CAS  Google Scholar 

  16. Springer TA. Adhesion receptors in the immune system. Nature. 1990;346:425–434.

    Article  PubMed  CAS  Google Scholar 

  17. Marlin SD, Springer TA. Purified intercellular adhesion molecule-1 (ICAM-l) is a ligand for lymphocyte function-associated antigen (LFA-1). Cell. 1987;51:813–819.

    Article  PubMed  CAS  Google Scholar 

  18. Arnaout MA. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood. 1990;75:1037–1050.

    PubMed  CAS  Google Scholar 

  19. Diamond MS, Staunton DE, Marlin SD, Springer TA. Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-l (CD54) and its regulation by glycosylation. Cell. 1991;65:961–971.

    Article  PubMed  CAS  Google Scholar 

  20. Issekutz AC, Issekutz TB. The contribution of LFA-1 (CD11a/CD18) and MAC-1 (CD11b/ CD 18) to the in vivo migration of polymorphonuclear leucocytes to inflammatory reactions in the rat. Immunology. 1992;76:655–661.

    PubMed  CAS  Google Scholar 

  21. Van de Langerijt AGM, Huitinga I, Joosten LAB, Dijkstra CD, van Lent PLEM, van den Berg WB. Role of β2 integrins in the recruitment of phagocytic cells in joint inflammation in the rat. Clin Immunol Immunopathol. 1994;73:123–131.

    Article  PubMed  Google Scholar 

  22. Neumayer HP, Schulz TF, Peters JH, Dierich MP. Importance of ICAM-l for accessory cell function of monocytic cells. Immunobiology. 1990;180:458–466.

    Article  PubMed  CAS  Google Scholar 

  23. Davignon D, Martz E, Reynolds T, Kurzinger F, Springer TA. Lymphocyte function-associated antigen 1 (LFA-1) a surface antigen distinct from Lyt-2,3 that participates in T lymphocyte-mediated killing. Proc Natl Acad Sci USA. 1981;78:4535–4539.

    Article  PubMed  CAS  Google Scholar 

  24. Yamaga KM, Bolen H, Kimura L, Lance EM. Enhanced chondrocyte destruction by lymphokine-activated killer cells. Arthritis Rheum. 1993;36:500–513.

    Article  PubMed  CAS  Google Scholar 

  25. Horner A, Davies ME, Franz B. Chondrocyte-PBMC interactions: The role of ICAM-l. Immunology. 1995;86:584–590.

    PubMed  CAS  Google Scholar 

  26. Meijne AML, Driessens MHE, La Rivière G, Casey D, Feltkamp CA, Roos E. LFA-1 integrin redistribution during T-cell hybridoma invasion of hepatocyte cultures and manganese-induced adhesion to ICAM-l. J Cell Sci. 1994;107:2557–2566.

    PubMed  CAS  Google Scholar 

  27. Wirth JJ, Fraker PJ, Kierszenbaum F. Zinc requirement for macrophage function: effect of zinc deficiency on uptake and killing of a protozoan parasite. Immunology. 1989;68:114–119.

    PubMed  CAS  Google Scholar 

  28. Shappell SB, Toman C, Anderson DC, Taylor AA, Entman ML, Smith CW. Mac-1 (CD11b/ CD 18) mediates adherence-dependent hydrogen peroxide production by human and canine neutrophils. J Immunol. 1990;144:2702–2711.

    PubMed  CAS  Google Scholar 

  29. Chong AS-F, Boussy IA, Jiang XL, Lamas M, Graf LH. CD54/ICAM-1 is a costimulator of NK cell-mediated cytotoxicity. Cell Immunol. 1994;157:92–105.

    Article  PubMed  CAS  Google Scholar 

  30. Rothlein R, Kishimoto TK, Mainolfi E. Cross-linking of ICAM-l induces co-signalling of an oxidative burst from mononuclear leukocytes. J Immunol. 1994;152:2488–2495.

    PubMed  CAS  Google Scholar 

  31. Alsalameh S, Mollenhauer J, Hain N, Stock K-P, Kalden JR, Burmester GR. Cellular immune response toward human articular chondrocytes. T cell reactivities against chondrocyte and fibroblast membranes in destructive joint diseases. Arthritis Rheum. 1990;33:1477–1486.

    Article  PubMed  CAS  Google Scholar 

  32. Burmester GR, Alsalameh S, Mollenhauer J. Cellular and humoral immune response against articular chondrocytes and proteoglycans in rheumatoid arthritis. In: Smolen JS, Kalden JR, Maini RN, eds. Rheumatoid Arthritis: Recent Research Advances. Berlin: Springer-Verlag; 1992:91–111.

    Google Scholar 

  33. Davies ME, Dingle JT, Piggott R, Power C, Sharma H. Expression of intercellular adhesion molecule 1 (ICAM-1) on human articular cartilage chondrocytes. Conn Tissue Res. 1991;26:207–216.

    Article  CAS  Google Scholar 

  34. Goebeler M, Hager GM, Roth J, Goerdt S, Sorg C. Nickel chloride and cobalt chloride, two common contact sensitizers, directly induce expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1 (VCAM-1) and endothelial leukocyte adhesion molecule (ELAM-1) by endothelial cells. J Invest Dermatol. 1993;100:759–765.

    Article  PubMed  CAS  Google Scholar 

  35. Sung C-P, Arleth AJ, Nambi P. Evidence for involvement of protein kinase C in expression of intercellular adhesion molecule-1 (ICAM-1) by human vascular endothelial cells. Pharmacology. 1994;48:143–146.

    Article  PubMed  CAS  Google Scholar 

  36. Altieri DC. Occupancy of CD11b/CD18 (Mac-1) divalent ion binding site(s) induces leukocyte adhesion. J Immunol. 1991;147:1891–1898.

    PubMed  CAS  Google Scholar 

  37. Faull RJ, Kovach NL, Harlan JM, Ginsberg MH. Stimulation of integrin-mediated adhesion of T lymphocytes and monocytes: two mechanisms with divergent biological consequences. J Exp Med. 1994; 179:1307–1316.

    Article  PubMed  CAS  Google Scholar 

  38. Tabibzadeh S, Kong QF, Kapur S et al. TNF-α induces dyscohesion of epithelial cells. Association with disassembly of actin filaments. Endocrinology. 1995;3:549–556.

    CAS  Google Scholar 

  39. Brown EJ, Graham IL. Macrophage and inflammatory cell matrix receptors: LFA-1, Mac-1, p150, 95 family. In: McDonald JA, Mecham RP, eds. Receptors for Extracellular Matrix. San Diego: Academic Press Inc., 1991:39–78.

    Google Scholar 

  40. Thompson HL, Matsushima K. Human polymorphonuclear leucocytes stimulated by tumour necrosis factor-alpha show increased adherence to extracellular matrix proteins which is mediated via the CD11b/18 complex. Clin Exp Immunol. 1992;90:280–285.

    Article  PubMed  CAS  Google Scholar 

  41. Ramachandrula A, Tiku K, Tiku ML. Tripeptide RGD-dependent adhesion of articular chondrocytes to synovial fibroblasts. J Cell Sci. 1992;101:859–871.

    PubMed  CAS  Google Scholar 

  42. Ruoslahti E. Fibronectin and its receptors. Ann Rev Biochem. 1988;57:375–418.

    Article  PubMed  CAS  Google Scholar 

  43. Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 1996;84:345–357.

    Article  PubMed  CAS  Google Scholar 

  44. Gailit J, Ruoslahti E. Regulation of the fibronectin receptor affinity by divalent cations. J Biol Cheni. 1988;263:12927–12932.

    CAS  Google Scholar 

  45. Dransfield I, Cabaňas C, Craig A, Hogg N. Divalent cation regulation of the function of the leukocyte integrin LFA-1. J Cell Biol. 1992;116:219–226.

    Article  PubMed  CAS  Google Scholar 

  46. Olsen HM, Parish CR, Altin JG. Histidine-rich glycoprotein binding to T-cell lines and its effect on T-cell substratum adhesion is strongly potentiated by zinc. Immunology. 1996;88:198–206.

    Article  PubMed  CAS  Google Scholar 

  47. Lominadze DG, Saari JT, Miller FN, Catalfamo JL, Justus DE, Schuschke DA. Platelet aggregation and adhesion during dietary copper deficiency in rats. Thromb Haem. 1996;75:630–634.

    CAS  Google Scholar 

  48. Trybulec M, Kowalska MA, McLane MA, Silver L, Weiqi L, Niewiarowski S. Exposure of platelet fibrinogen receptors by zinc ions: role of protein kinase C. Proc Soc Exp Biol Med. 1993;203:108–116.

    PubMed  CAS  Google Scholar 

  49. Kowalska MA, Juliano D, Trybulec M, Weiqi L, Niewiarowski S. Zinc ions potentiate adenosine disulphate-induced platelet aggregation by activation of protein kinase C. J Lab Clin Med. 1994;123:102–109.

    PubMed  CAS  Google Scholar 

  50. Forbes IJ, Zalewski PD, Hurst NP, Giannakis C, Whitehouse MW. Zinc increases phorbol ester receptors in intact B-cells, neutrophil polymorphs and platelets. FEBS Lett. 1989;247:445–447.

    Article  PubMed  CAS  Google Scholar 

  51. van Willigen G, Akkerman JE. Protein kinase C and cyclic AMP regulate reversible exposure of binding sites for fibrinogen on the glycoprotein IIb-IIIa complex of human platelets. Biochem J. 1991;273:115–120.

    PubMed  Google Scholar 

  52. Hynes RO. Integrins: versatility, modulation and signalling in cell adhesion. Cell. 1992;69:11–25.

    Article  PubMed  CAS  Google Scholar 

  53. D’Souza SE, Haas TA, Piotrowicz RS et al. Ligand and cation binding are dual functions of a discrete segment of integrin β3 subunit: cation displacement is involved in ligand binding. Cell. 1994;79:659–667.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Davies, M.E., Pasqualicchio, M. (1998). Copper and zinc compounds and cell surface interactions. In: Rainsford, K.D., Milanino, R., Sorenson, J.R.J., Velo, G.P. (eds) Copper and Zinc in Inflammatory and Degenerative Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3963-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3963-2_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5757-8

  • Online ISBN: 978-94-011-3963-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics