Skip to main content

Nephrotoxicity related to X-ray contrast media

  • Chapter
Advances in X-Ray Contrast

Abstract

This survey discusses pharmacokinetic aspects and the renal glomerular and tubular side-effects of modern low osmolar X-ray contrast media (LOCM). The clearance of X-ray contrast media (CM) approximates to the glomerular filtration rate (GFR) and the CM are concentrated during their passage through the renal tubular system up to 100 times the plasma concentration during peak diuresis in patients with normal GFR. The urinary CM concentration is relatively lower in patients with renal failure.

Methods for evaluation of GFR and renal tubular function are discussed. Serum creatinine is a rather insensitive parameter for estimation of GFR, especially in patients with a small reduction of GFR, and plasma or renal clearance methods are recommended. However, serum creatinine reflects major drug-induced fluctuations in GFR, and is a suitable parameter for determination of GFR in most instances. Serum creatinine often peaks more than 72 hours after administration of CM in’ patients with reduced GFR, and should be monitored for at least 5 days in such patients.

LOCM seem to be less toxic when administered intravenously than when given intra-arterially. However, from randomized trials one can conclude that LOCM reduce the incidence of acute renal failure, as defined as an increase in serum creatinine, especially in high-risk patients.

A dose-dependent increase in the urinary excretion of renal tubular lysosomal and brush border enzymes is regularly observed after administration of CM. Dimeric LOCM seem to affect the excretion of lysosomal enzymes less than monomeric LOCM. Enzymuria is also observed after intravenous administration of equimolar doses of mannitol, but urinary enzyme excretion is significantly greater and more long-lived after CM. Thus, the enzymuria cannot be explained only by osmotic effects of the CM.

The clinical importance of this enzymuria is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Olsson B, Aulie Å, Sveen K, Andrew E. Human pharmaco-kinetics of iohexol. A new nonionic contrast medium. Invest Radiol. 1983; 18: 177–182.

    Article  PubMed  CAS  Google Scholar 

  2. Waaler A, Svaland M, Fauchald P, Jakobsen JÅ, Kolmannskog F, Berg KJ. Elimination of iohexol, a low osmolar nonionic contrast medium, by hemodialysis in patients with chronic renal failure. Nephron. 1990; 56: 81–85.

    Article  PubMed  CAS  Google Scholar 

  3. Humes HD, Hunt DA, White MD. Direct toxic effect of the radiocontrast agent diatrizoate on renal proximal tubule cells. Am J Physiol. 1987; 252: F246–F255.

    PubMed  CAS  Google Scholar 

  4. Andersen K-J, Vik H. Use of epithelial cell lines for testing cellular toxicity. In: Bianci C, Bocci V, Carone FA, Rabkin R, eds. Kidney, proteins and drugs: An update. Contrib Nephrol. Basel: Karger. 1993; 101: 227–234.

    Google Scholar 

  5. Nordby A, Halgunset J, Haugen OA. Effects of radiographic contrast media on monolayer cell cultures. Invest Radiol. 1986; 21: 234–239.

    Article  PubMed  CAS  Google Scholar 

  6. Svaland M, Kolmannskog F, Lillevold PE, Nordal KP, Ressem L, Berg KJ. Pharmacokinetics of iopentol in patients with chronic renal failure. Acta Radiol. 1992; 33: 482–484.

    PubMed  CAS  Google Scholar 

  7. Barrett BJ, Parfrey PS, Vavasour HM, et al. Contrast nephropathy in patients with impaired renal function: High versus low osmolar media. Kidney Int. 1992; 41: 1274–1279.

    Article  PubMed  CAS  Google Scholar 

  8. Davidson CJ, Hlatky M, Morris KG, et al. Cardiovascular and renal toxicity of a nonionic radiographic contrast agent after cardiac catheterization. A prospective trial. Ann Intern Med. 1989; 110: 119–124.

    PubMed  CAS  Google Scholar 

  9. Lautin EM, Freeman NJ, Schoenfeld AH, et al. Radiocontrast-associated renal dysfunction: Incidence and risk factors. Am J Roentgenol. 1991; 157: 49–58.

    CAS  Google Scholar 

  10. Schwab SJ, Hlatky MA, Pieper KS, et al. Contrast nephrotoxicity: A randomized controlled trial of a nonionic and an ionic radiographic contrast agent. N Engl J Med. 1989; 320: 149–153.

    Article  PubMed  CAS  Google Scholar 

  11. Manske CL, Sprafka JM, Strony JT, Wang Y. Contrast nephropathy in azotemic diabetic patients undergoing coronary angiography. Am J Med. 1990; 89: 615–620.

    Article  PubMed  CAS  Google Scholar 

  12. Berg KJ, Jakobsen JÅ. Nephrotoxicity related to contrast media. In: Enge I, Edgren J, eds. Patient safety and adverse events in contrast medium examinations. Amsterdam: Elsevier Science Publishers. 1989: 111–120.

    Google Scholar 

  13. Byrd L, Sherman RL. Radiocontrast-induced acute renal failure: A clinical and pathophysiological review. Medicine (Baltimore). 1979; 58: 270–279.

    Article  CAS  Google Scholar 

  14. Campbell DR, Flemming DK, Mason W, et al. A comparative study of the nephrotoxicity of iohexol, iopamidol and ioxaglate in peripheral angiography. J Can Assoc Radiol. 1990; 41: 133–137.

    CAS  Google Scholar 

  15. Barrett BJ, Carlisle EJ. A meta-analysis of the relative nephrotoxicity of high and low-osmolality iodinated contrast media. Radiology. In press.

    Google Scholar 

  16. Kunin CM, Chesney RW, Craig WA, England AC, DeAngelis C. Enzymuria as a marker of renal injury and disease: Studies of N-acetyl-β-glucosaminidase in the general population and in patients with renal disease. Pediatrics. 1978; 62: 751–760.

    PubMed  CAS  Google Scholar 

  17. Scherberich JE, Rautschka E, Fischer A, Kollath J, Riemann EH. Tubular histuria: Clinical evaluation of the different nephrotoxic potential of X-ray contrast media. In: Bianci C, Bocci V, Carone FA, Rabkin R, eds. Kidney, proteins and drugs. Contrib Nephrol. Basel:Karger. 1990; 83: 229–236.

    CAS  Google Scholar 

  18. Jakobsen JÅ, Berg KJ, Waaler A, Andrew E. Renal effects of the non-ionic contrast medium iopentol after intravenous injection in healthy volunteers. Acta Radiol. 1990; 31: 87–91.

    PubMed  CAS  Google Scholar 

  19. Jakobsen JÅ, Nossen JØ, Jørgensen NP, Berg KJ. Renal tubular effects of diuretics and X-ray contrast media: A comparative study of equi-molar doses in healthy volunteers. Invest Radiol. In press.

    Google Scholar 

  20. Powell CJ, Holtz, E, Bridges JW. Nephrotoxicity of non-ionic and iso-osmotic dimeric radiological contrast media. J Pathol. 1985; 146: 276.

    Google Scholar 

  21. Hofmeister R, Bhargava AS, Günzel P. The use of urinary N-acetyl-β-D-glucosaminidase (NAG) for the detection of contrast-media-induced “osmotic nephrosis” in rats. Toxicol Lett. 1990; 50: 9–15.

    Article  PubMed  CAS  Google Scholar 

  22. Moureau J-F, Droz D, Sabto J, et al. Osmotic nephrosis induced by water-soluble triiodinated contrast media in man. Radiology. 1975; 115: 329–336.

    Google Scholar 

  23. Jakobsen JÅ, Lundby B, Kristoffersen DT, Borch KW, Hald JK, Berg KJ. Evaluation of renal function with delayed CT after injection of nonionic monomeric and dimeric contrast media in healthy volunteers. Radiology. 1992; 182: 419–424.

    PubMed  CAS  Google Scholar 

  24. Kløw NE, Levorstad K, Berg KJ, et al. Iodixanol in cardioangiography in patients with coronary artery disease. Tolerability, cardiac and renal effects. Acta Radiol. 1993; 34: 72–77.

    PubMed  Google Scholar 

  25. Pugh ND, Sissons GRJ, Ruttley MST, Berg KJ, Nossen JØ, Eide H. Iodixanol in femoral arteriography (phase III): A comparative double-blind parallel trial between iodixanol and iopromide. Clin Radiol. 1993; 47: 96–99.

    Article  PubMed  CAS  Google Scholar 

  26. Price RG. Urinary enzymes, nephrotoxicity and renal disease. Toxicology. 1982; 23: 99–134.

    Article  PubMed  CAS  Google Scholar 

  27. Wellwood JM, Ellis BG, Price RG, Hammond K, Thompson AR, Jones NF. Urinary N-acetyl-β-D-glucosaminidase activities in patients with renal disease. Br Med J. 1975; 3:408–411.

    Article  PubMed  CAS  Google Scholar 

  28. Whiting PH, Ross IS, Borthwick LJ. N-acetyl-D-glucosami-nidase levels and diabetic microangiopathy. Clin Chim Acta. 1979; 97: 191–195.

    Article  PubMed  CAS  Google Scholar 

  29. Alderman MH, Melcher L, Drayer DE, Reidenberg MM. Increased excretion of N-acetyl-β-glucosaminidase in essential hypertension and its decline with antihypertensive therapy. N Engl J Med. 1983; 309: 1213–1217.

    Article  PubMed  CAS  Google Scholar 

  30. Berg KJ, Kolmannskog F, Lillevold PE, et al. Iopentol in patients with renal failure: its effects on renal function and its use as a glomerular filtration parameter. Scand J Clin Lab Invest. 1992; 52: 27–33.

    Article  PubMed  CAS  Google Scholar 

  31. Cavaliere G, Arrigo G, D’Amico G, et al. Tubular nephrotoxicity after intravenous urography with ionic high-osmolal and nonionic low-osmolal contrast media in patients with chronic renal insufficiency. Nephron. 1987; 46: 128–133.

    Article  PubMed  CAS  Google Scholar 

  32. Dawson P. Chemotoxicity of contrast media and clinical adverse effects: A review. Invest Radiol. 1985; 20(suppl): S84–S91.

    Article  PubMed  CAS  Google Scholar 

  33. Heyman SN, Brezis M, Greenfeld Z, Rosen S. Protective role of furosemide and saline in radiocontrast-induced acute renal failure in the rat. Am J Kidney Dis. 1989; 14: 377–385.

    PubMed  CAS  Google Scholar 

  34. DiBona GF. Effect of anionic and nonionic contrast media on renal extraction of para-aminohippurate in the dog. Proc Soc Exp Biol Med. 1978; 157: 453–455.

    PubMed  CAS  Google Scholar 

  35. Talner LB, Davidson AJ. Effect of contrast media on renal extraction of PAH. Invest Radiol. 1968; 3: 301–309.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Berg, K.J., Jakobsen, J.Å. (1998). Nephrotoxicity related to X-ray contrast media. In: Dawson, P., Clauss, W. (eds) Advances in X-Ray Contrast. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3959-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3959-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-8741-1

  • Online ISBN: 978-94-011-3959-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics