Advertisement

The Influence of Growth Temperature and Growth Irradiance on Thermal Dissipation of Excess Excitation Energy in Winter Rye

  • Gordon R. Gray
  • Alexander G. Ivanov
  • Norman P. A. Huner
Chapter

Abstract

A sustained depression in photosynthetic efficiency due to the absorption of excess light energy is referred to as photoinhibition of photosynthesis [1, 2]. Environmental stresses, such as low temperature, further limit the ability of the plant to utilize light energy and enhance the ohotoinhibitory response [1]. However, photosynthetic organisms have evolved many mecha.lisms to cope with the absorption of excess light energy. Non-photochemical quenching (NPQ) of chlorophyll (Chl) a fluorescence refers to a combination of photoprotective mechanisms which dissipate excess excitation energy as heat in the light-harvesting complexes associated with photosystem II (PSII) [3–5]. The development of a frans-thylakoid ApH appears to be essential for the development of NPQ which is in some way enhanced by the xanthophyll cycle [3–5]. The extent of NPQ, in some cases, but not all, is strongly correlated to levels of antheraxanthin (A) and zeaxanthin (Z) formed from violaxanthin (V) via the xanthophyll cycle under high-light conditions [3–6].

Key words

light acclimation non-photochemical quenching photochemical quenching photoinhibition temperature acclimation xanthophyll cycle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Huner, N.P.A., Öquist, G., Hurry, V.M., Krol, M., Falk, S. and Griffith, M. (1993) Photosynth. Res. 37, 19–39CrossRefPubMedGoogle Scholar
  2. [2]
    Osmond, C.B. (1994) in Photoinhibition of Photosynthesis: from molecular mechanisms to the field (Baker, N.R., Bowyer, JR., eds) pp.1–24, βios Scientific Publishers, OxfordGoogle Scholar
  3. [3]
    Denunig-Adams, B. and Adams, W.W. III (1996) Trends Plant Sci. 1, 21–26CrossRefGoogle Scholar
  4. [4]
    Gilmore, A.M. (1997) Physiol. Plant. 99, 197–209CrossRefGoogle Scholar
  5. [5]
    Horton, P., Ruban, A.V. and Walters, R.G. (1996) Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 655–684CrossRefPubMedGoogle Scholar
  6. [6]
    Hurry, V.M., Anderson, J.M., Chow, W.S. and Osmond, C.B. (1997) Plant Physiol. 113, 639–648CrossRefPubMedPubMedCentralGoogle Scholar
  7. [7]
    Adams, W.W. III and Denunig-Adams, B. (1995) Plant Cell Environ. 18, 117–127CrossRefGoogle Scholar
  8. [8]
    Adams, W.W. III, Denunig-Adams, B., Verhoeven, A.S. and Barker, D.H. (1995) Aust. J. Plant Physiol. 22, 261–276CrossRefGoogle Scholar
  9. [9]
    Adams, W.W. III, Hoehn, A. and Demmig-Adams, B. (1995) Aust. J. Plant Physiol. 22, 75–85CrossRefGoogle Scholar
  10. [10]
    Verhoeven, A.S., Adams, W.W. III and Demmig-Adams, B. (1996) Physiol. Plant. 96, 567–576CrossRefGoogle Scholar
  11. [11]
    Gray, G.R., Savitch, L.V., Ivanov, A.G. and Huner, N.P.A. (1996) Plant Physiol. 110, 61–71CrossRefPubMedPubMedCentralGoogle Scholar
  12. [12]
    Huner, N.P.A., Öquist, G. and Sarhan, F. (1998) Trends Plant Sci. 3, 224–230CrossRefGoogle Scholar
  13. [13]
    Schreiber, U., Bilger, W. and Neubauer, C. (1994) in Ecophysiology of Photosynthesis (Schulze, E.-D., Caldwell, MM., eds) pp. 49–70, Springer-Verlag, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Gordon R. Gray
    • 1
  • Alexander G. Ivanov
    • 2
  • Norman P. A. Huner
    • 2
  1. 1.MSU-DOE Plant Research LaboratoryMichigan State UniversityEast LansingUSA
  2. 2.Department of Plant SciencesThe University of Western OntarioLondonCanada

Personalised recommendations