Skip to main content

Antimicrobial Compounds and Resistance

The Role of Phytoalexins and Phytoanticipins

  • Chapter
Mechanisms of Resistance to Plant Diseases

Summary

Many antimicrobial compounds produced by plants have important roles in their resistance to infection by bacteria, fungi and nematodes. The defensive compounds may be broadly classified into phytoanticipins which are constitutive, and phytoalexins which are synthesized in response to challenge by microorganisms. The two groups of secondary metabolites include a wide range of chemical families produced by different biosynthetic pathways. Phytoanticipins are primarily involved in non-host rather than varietal resistance. Many pathogens have evolved mechanisms of tolerance to their host’s phytoanticipins and phytoalexins. Tolerance often involves enzymatic degradation, and transfer of genes for such detoxification can extend host range. Activation of phytoalexin biosynthesis is associated with the hypersensitive reaction or the formation of necrotic lesions. Accumulation of phytoalexins is highly localized. Two strategies appear to have evolved in pathogens to overcome the phytoalexin response, either the defence is not activated or the pathogen tolerates the presence of the inhibitor. Antimicrobial compounds from plants have potential as fungicides themselves or in providing classes of compounds suitable for development as biocides. The biosynthetic pathways to phytoanticipins and phytoalexins offer targets for genetic manipulation to engineer resistance. Progress in the development of our understanding of the role of antimicrobial compounds in resistance is critically discussed, with particular emphasis on the application of molecular genetics to unravel plant-microbe interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arneson PA and Durbin RD (1967) Hydrolysis of tomatine by Septoria lycopersici, a detoxification mechanism. Phytopathology 57: 1358–1360

    CAS  Google Scholar 

  • Arneson PA and Durbin RD (1968) The sensitivity of fungi to α-tomatine. Phytopathology 58: 536–537

    Google Scholar 

  • Atkinson P and Blakeman JP (1982) Seasonal occurrence of an antimicrobial flavonone, sakuranetin, associated with glands on leaves of Ribes nigrum, New Phytol 92: 63–74

    Article  CAS  Google Scholar 

  • Bailey JA (1982) Physiological and biochemical events associated with the expression of resistance to diseases. In: Wood RKS (ed) Active Defense Mechanisms in Plants, pp 39–65. Plenum Press, New York, London

    Chapter  Google Scholar 

  • Bailey JA and Deverall BJ (1971) Formation and activity of phaseollin in the interaction between bean hypocotyls (Phaseolus vulgaris) and physiological races of Colletotrichum lindemuthianum. Physiol Plant Pathol 1: 435–449

    Article  CAS  Google Scholar 

  • Bailey JA and Mansfield JW (1982) Phytoalexins. Blackie, Glasgow

    Google Scholar 

  • Bailey JA, Rowell PM and Arnold GM (1980) The temporal relationship between infected cell death, phytoalexin accumulation and the inhibition of hyphal development during resistance of Phaseolus vulgaris to Colletotrichum lindemuthianum. Physiol Plant Pathol 17: 329–339

    Article  CAS  Google Scholar 

  • Bailey JA, O’Connell RJ, Pring RJ and Nash C (1992) Infection strategies of Colletotrichum species. In: JA Bailey and MJ Jeger (eds) Colletotrichum: Biology, pathology and control, pp 88–121. CAB International, Wallingford.

    Google Scholar 

  • Barz W and Welle R (1992) Biosynthesis and metabolism of isoflavones and pterocarpan phytoalexins in chickpea, soybean and phytopathogenic fungi. In: Stafford HA and Ibrahim RK (eds) Phenolic metabolism in plants, pp 134–164. Plenum Press, New York

    Google Scholar 

  • Bennett MH, Gallagher MDS, Bestwick CS, Rossiter JT and Mansfield JW (1994) The phytoalexin response of lettuce to challenge by Botrytis cinerea, Bremia lactucae and Pseudomonas syringae pv. phaseolicola. Physiol Mol Plant Pathol 44: 321–333

    Article  CAS  Google Scholar 

  • Bergman BHH and Beigersbergen JCM (1968) A fungitoxic substance extracted from tulips and its possible role as a protectant against disease. Neth J Plant Pathol 74: 157–162

    Article  CAS  Google Scholar 

  • Bestwick CS, Brown IR, Bennett MHR and Mansfield J (1997) Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv. phaseolicola. Plant Cell 9: 209–221

    CAS  Google Scholar 

  • Biggs DR, Welle R and Grisebach H (1990) Intracellular localization of prenyltransferases of isoflavonoid phytoalexin biosynthesis in bean and soybean. Planta 181: 244–248

    Article  CAS  Google Scholar 

  • Blakeman JP (1973) The chemical environment of leaf surfaces with special reference to germination of pathogenic fungi. Pestic Sci 4: 575–588

    Article  CAS  Google Scholar 

  • Blount JW, Dixon RA and Paiva NL (1993) Stress responses in alfalfa (Medicago sativa L.) XVI. Antifungal activity of medicarpin and its biosynthetic precursors: implications for the genetic manipulation of stress metabolites. Physiol Mol Plant Pathol 41: 333–349

    Google Scholar 

  • Bones AM and Rossiter JT (1996) The myrosinase-glucosinolate systems, its organisation and biochemistry. Phyiol Plant 97: 194–208

    Article  CAS  Google Scholar 

  • Bowyer P, Clarke BR, Lunness P, Daniels MJ and Osbourne AE (1995) Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme. Science 267: 371–374.

    Article  PubMed  CAS  Google Scholar 

  • Brown I, Mansfield J, Irlam I, Conrads-Strauch J and Bonas U (1993) Ultrastructure of interactions between Xanthomonas campestris pv. vesicatoria and pepper, including immunocytochemical localization of extracellular Polysaccharides and the AvrBs3 protein. Mol Plant-Microbe Interact 6: 376–386

    Article  CAS  Google Scholar 

  • Burden RS, Bailey JA and Vincent GG (1974) Metabolism of phaseollin by Colletotrichum lindemuthianum. Phytochemistry 13: 1789–1791

    Article  CAS  Google Scholar 

  • Cartwright DW, Langcake P and Ride JP (1981) Phytoalexin production in rice and its enhancement by a dichlorocyclopropane fungicide. Physiol Plant Pathol 17: 259–267

    Article  Google Scholar 

  • Chappell J (1995) The biochemistry and molecular biology of isoprenoid metabolism. Plant Physiol 107: 1–6

    PubMed  CAS  Google Scholar 

  • Chew FS (1988) Biological effects of glucosinolates. In: Cutler HG (ed) Biologically active natural products: potential use in agriculture, pp 151–181. American Chemical Society, Washington DC, USA

    Google Scholar 

  • Ciuffetti LM and VanEtten HD (1996) Virulence of a pi satin-deficient Nectria haematococca MPVI isolate is increased by transformation with a pisatin demethylase gene. Molec Plant-Microbe Interact 9: 787–792

    Article  Google Scholar 

  • Coleman MJ, Mainzer J and Dickerson AG (1992) Characterization of a fungal glycoprotein that elicits a defence response in French bean. Physiol Mol Plant Pathol 40: 333–351

    Article  CAS  Google Scholar 

  • Cooper RM (1981) Pathogen-induced changes in host ultrastructure. In: Plant disease control: resistance and susceptibility (eds RC Staples and GH Toenniesen) Wiley, New York, pp 105–142

    Google Scholar 

  • Cooper RM, Resende MLV, Flood J, Rowan MG, Beale MH and Potter U (1996) Detection and cellular localization of elemental sulphur in disease-resistant genotypes of Theobroma cacao. Nature 379: 159–162

    Article  CAS  Google Scholar 

  • Croft KPC, Jiitter F and Slusarenko AJ (1993) Volatile products of the lipoxygense pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with Pseudomonas syringae pv. phaseolicola. Plant Physiol 101: 13–24

    CAS  Google Scholar 

  • Crombie L, Crombie WML and Whiting DA (1984) Structures of the four avenacins, oat root resistance factors to take-all disease. J Chem Soc Chem Comm 4: 246–248

    Article  Google Scholar 

  • Crombie WML, Crombie L, Green JB and Lucas JA (1986) Pathogenicity of the take-all fungus to oats: its relationship to the concentration and detoxification of the four avenacins. Phytochemistry 25: 207–2083

    Article  Google Scholar 

  • Cruickshank IAM and Perrin DR (1960) Isolation of a phytoalexin from Pisum sativum L. Nature 187: 799–800

    Article  PubMed  CAS  Google Scholar 

  • Cruickshank IAM and Perrin DR (1971) Studies on phytoalexins. XI. The induction, anti-microbial spectrum and chemical assay of phaseollin. Phytopath Z 70: 209–229

    CAS  Google Scholar 

  • Dai GH, Nicole M, Andary C, Martinez C, Bresson E, Boher B, Daniel JF and Geiger JP (1996) Flavonoids accumulate in cell walls, middle lamellae and callose-rich papillae during an incompatible interaction between Xanthomonas campestris pv. malvacearum (Race 18) and cotton. Physiol Mol Plant Pathol 49: 285–306

    Article  CAS  Google Scholar 

  • Défago G and Kern H (1983) Induction of Fusarium solani mutants insensitive to tomatine, their pathogenicity and aggressiveness to tomato fruits and pea plants. Physiol Mol Plant Pathol 22: 29–37

    Article  Google Scholar 

  • Denny TP, Matthews PS and VanEtten HD (1987) A possible mechanism of nondegradative tolerance of pisatin in Nectria haematococca MP VI. Physiol Mol Plant Pathol 30: 93–107

    Article  CAS  Google Scholar 

  • Deverall BJ (1967) Biochemical changes in infection dropletscontaining spores of Botrytis spp. incubated in the seed cavities of pods of bean (Vicia faba L.). Ann appl Biol 59: 375–387

    Article  CAS  Google Scholar 

  • Deverall BJ (1977) Defence mechanisms of plants. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Deverall BJ (1982) Introduction. In: Phytoalexins (eds JA Bailey and JW Mansfield), pp 1–16, Blackie, Glasgow.

    Google Scholar 

  • de Wit PJGM (1995) Fungal avirulence genes and plant resistance genes: unravelling the molecular basis of gene-for-gene interactions. Advances in Botanical Research 21: 148–185

    Google Scholar 

  • Dixon RA and Harrison MJ (1990) Activation, structure, and organization of genes involved in microbial defense in plants. Adv Genet 28: 165–217

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA and Paiva NL (1995) Stress induced phenylpropanoid metabolism. Plant Cell 7: 1085–1097

    PubMed  CAS  Google Scholar 

  • Dixon RA, Choudhary AD, Dalkin D, Edwards R, Fahrendorf T, Gowri G, Harrison MJ, Lamb CJ, Loake GJ, Maxwell CA, Orr J and Paiva NL (1992) Molecular biology of stress-induced phenylpropanoid and isoflavonoid biosynthesis in alfalfa. In: Phenolic metabolism in plants (eds HA Stafford and RK Ibrahim) Plenum Press, New York, pp 91–138

    Chapter  Google Scholar 

  • Dixon RA, Paiva NL and Bhattacharyya MK (1995) Engineering disease resistance in plants: An overview. In: Molecular methods in plant pathology (eds RP Singh and US Singh) pp. 249–270 CRC Press, Boca Raton

    Google Scholar 

  • Dixon RA, Lamb CJ, Masoud S, Sewalt VJH and Paiva NL (1996) Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses — a review. Gene 179: 61–71

    Article  PubMed  CAS  Google Scholar 

  • Durrands PK and Cooper RM (1988) Selection and characterization of pectinase-deficient mutants of the vascular wilt pathogen Verticilliutn albo-atrium. Physiol Mol Plant Pathol 32: 343–362

    Article  CAS  Google Scholar 

  • Essenberg M, Pierce ML, Cover EC, Hamilton B, Richardson PE and Scholes VE (1992a) A method for determining phytoalexin concentrations in fluorescent, hypersensitively necrotic cells in cotton leaves. Physiol Mol Plant Pathol 41: 101–109

    Article  CAS  Google Scholar 

  • Essenberg M, Pierce ML, Hamilton B, Cover EC, Scholes VE and Richardson PE (1992b) Development of fluorescent, hypersensitively necrotic cells containing phytoalexins adjacent to colonies of Xanthomonas campestris pv. malvacearum in cotton leaves. Physiol Mol Plant Pathol 41: 85–99

    Article  CAS  Google Scholar 

  • Fenwick GR, Heaney RK and Mullin WJ (1983) Glucosinolates and their breakdown products in food and food plants. CRC Critical Reviews in Food Science and Nutrition 18: 123–201

    PubMed  CAS  Google Scholar 

  • Fenwick GR, Price KR, Tsukamota C and Okubo K (1992) Saponins. In: Toxic substances in crop plants (eds JP D’Mello, CM Duffus and JH Duffus) Royal Society of Chemistry, Cambridge, UK. pp. 285–327

    Google Scholar 

  • Franich RA, Gadgil PD and Shain L (1983) Fungistatic effects of Pinus radiata needle epicuticular fatty and acid resins on Dothiostroma pini. Physiol Plant Path 23: 183–195

    Article  CAS  Google Scholar 

  • Fry WE and Myers DF (1981) Hydrogen cyanide metabolism by fungal pathogens of cyanogenic plants In: Vennesland B, Knowles CJ, Conn EE, Westley J and Wissing F (eds) Cyanide in Biology, pp. 321–334. Academic Press, London

    Google Scholar 

  • Giamoustaris A and Mithen RF (1995) The effect of modifying the glucosinolate content of leaves of oilseed rape (Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests. Ann. appl. Biol. 126: 347–363

    CAS  Google Scholar 

  • Giamoustaris A and Mithen R (1997) Glucosinolates and disease resistance in oilseed rape (Brassica napus ssp. oleifera). PI Pathol 46: 271–275

    Article  CAS  Google Scholar 

  • Glazebrook J and Ausubel FM (1994) Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proc Natl Acad Sci USA 91: 8955–8959

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J, Rogers EE and Ausubel FM (1996) Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143: 973–982

    PubMed  CAS  Google Scholar 

  • Godwin J, Anthony VM, Clough JM and Godfrey CRA (1992) ICIA5504: a novel, broad spectrum, systemic β-methoxyacrylate fungicide. Proc 1992 Brighton Crop Protection Conference — Pests and Diseases 1: 435–442.

    Google Scholar 

  • Graham MY and Graham TL (1991) Rapid accumulation of anionic peroxidases and phenolic polymers in soybean cotyledon tissues following treatment with Phytophthora megasperma f.sp glycinea wall glucan. Plant Physiol 97: 1445–1455

    Article  PubMed  CAS  Google Scholar 

  • Grayer RJ and Harborne JJ (1994) A survey of antifungal compounds from higher plants. Phytochemistry 37: 19–42

    Article  CAS  Google Scholar 

  • Greger H, Hofer O, Kählig H and Würz G (1992) Sulfur containing cinnamides with antifungal activity from Glycosmis cyanocarpa. Tetrahedron 48: 1209–1218

    Article  CAS  Google Scholar 

  • Hahlbrock K, Scheel D, Logemann E, Nürnberger T, Parniske M, Reinold S, Sacks WR and Schmelzer E (1995) Oligopeptide elicitor-mediated defense gene activation in cultured parsley cells. Proc Natl Acad Sci USA 92: 4150–4157

    Article  PubMed  CAS  Google Scholar 

  • Hain R, Reif H-J, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmeizer E, Schreier, PH, Stocker RH. and Stenzel K (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361: 153–156

    Article  PubMed  CAS  Google Scholar 

  • Hammerschmidt R and Kuc J (1982) Lignification as a mechanism for induced systemic resistance in cucumber. Physiol Mol Plant Path 20: 61–71

    Article  CAS  Google Scholar 

  • Hargreaves JA and Bailey JA (1978) Phytoalexin production by hypocotyls of Phaseolus vulgaris in response to constitutive metabolites released by damaged cells. Physiol Plant Pathol 13: 89–100

    Article  CAS  Google Scholar 

  • Hargreaves JA, Mansfield JW and Rossall S (1977) Changes in phytoalexin concentration in tissues of the broad bean plant (Vicia faba L.) following inoculation with species of Botrytis. Physiol Plant Pathol 11: 227–242

    Article  CAS  Google Scholar 

  • Hassan F, Rothnia NE, Yeung SP and Palmer MV (1988) Enzyme-linked immunosorbent assays for alkenyl glucosinolates. J Agric Food Chem 36: 398–403

    Article  CAS  Google Scholar 

  • Heath MC and Skalamera D (1997) Cellular interactions between plants and biotrophic fungal parasites. Adv Bot Res 24: 196–225

    Google Scholar 

  • Hutson RA and Mansfield JW (1980) A genetical approach to the analysis of mechanisms of pathogenicity in Botrytis/Vicia interactions. Physiol Plant Pathol 17: 309–317

    Article  CAS  Google Scholar 

  • Ingham JL (1973) Disease resistance in higher plants. The concept of pre-infectional and post-infectional resistance. Phytopathol Z 78: 314–335

    CAS  Google Scholar 

  • Ingham J (1981) Phytoalexin induction and its taxonomic significance in the Leguminosae. In: Advances in legume systematics (eds. RM Polhill and PH Raven) HMSO, London, pp 599–626

    Google Scholar 

  • Ingham JL (1982) Phytoalexins from the Leguminosae. In: Bailey J and Mansfield JW (eds) Phytoalexins, pp 21–80. Blackie, Glasgow

    Google Scholar 

  • Ingham JL, Tahara S and Harborne JB (1983) Fungitoxic isoflavones from Lupinus albus and other Lupinus species. Z Naturforsch 38c: 194–200

    CAS  Google Scholar 

  • Jerome SMR and Müller KO (1958) Studies on phytoalexins II Influence of temperature on resistance of Phaseolus vulgaris towards Sclerotinia fructicola with reference to phytoalexin output. Aust J Biol Sci 11: 301–314

    Google Scholar 

  • Kesselmeier J and Urban B (1983) Subcellular localization of saponins in green and etiolated leaves and green protoplasts of oat (Avena sativa L.). Protoplasma 114: 133–140

    Article  CAS  Google Scholar 

  • Keukens EAJ, de Vrije T, van den Boom C, de Waard P, Plasmna HH, Thielm F, Chupin V, Jongen WMF and de Kruijff B (1995) Molecular basis of glycoalkaloid induced membrane disruption. Biochim Biophys Acta 1240: 216–228

    Article  PubMed  Google Scholar 

  • Kneusel RE, Matern U and Nicolay K (1989) Formation of trans-caffeoyl-CoA from trans-4-coumaroyl-CoA by Zn2+-dependent enzymes in cultured plant cells and its activation by an elicitor-induced pH shift. Arch Biochem Biophys 269: 455–462.

    Article  PubMed  CAS  Google Scholar 

  • Kodama O, Suzuki T, Miyakawa J and Akatsuka T (1988) Ultraviolet-induced accumulation of phytoalexins in rice leaves. Agric Biol Chem 52: 2469–2473

    Article  CAS  Google Scholar 

  • Kokubun T and Harborne JB (1994) A survey of phytoalexin induction in leaves of the Rosaceae by copper ions. Z Naturforsch 49c: 628–634

    Google Scholar 

  • Kuc J (1982) Phytoalexins from the Solanaceae In: Bailey JA and Mansfield JW (eds) Phytoalexins, pp 81–100. Blackie, Glasgow

    Google Scholar 

  • Kuc J (1992) Antifungal compounds in plants. In: Nigg HN and Scigier D (eds) Phytochemical resources for medicine and agriculture, pp. 159–184. Plenum Press, New York

    Chapter  Google Scholar 

  • Kylin H, Atuma S, Hovander L and Jensen S (1994) Elemental sulphur (S8) in higher plants — biogenic of anthropogenic origin? Experientia 50: 80–85

    Article  CAS  Google Scholar 

  • Langcake P and Pryce RJ (1977) A new class of phytoalexins from grapevines. Experientia 33: 151–152

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R and Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583–593

    Article  PubMed  CAS  Google Scholar 

  • Low PS and Merida JR (1996) The oxidative burst in plant defense: function and signal transduction. Physiol Plant 96: 533–542

    Article  CAS  Google Scholar 

  • Mace ME, Bell AA and Stipanovic RD (1978) Histochemistry and identification of flavanols in Verticillium wilt-resistant and-susceptible cottons. Physiol Plant Pathol 13: 143–149

    Article  Google Scholar 

  • Mansfield JW (1980) Mechanisms of resistance to Botrytis In: Coley-Smith JR, Verhoeff K and Jarvis WR (eds) The biology of Botrytis, pp 181–218. Academic Press, London

    Google Scholar 

  • Mansfield JW (1982) Role of phytoalexins in disease resistance. In: Bailey J and Mansfield JW (eds) Phytoalexins, pp 253–288. Blackie, Glasgow

    Google Scholar 

  • Mansfield JW (1983) Antimicrobial compounds. In: Callow JA (ed) Biochemical plant pathology, pp.155–164. John Wiley & Sons, Chichester

    Google Scholar 

  • Mansfield JW (1990) Recognition and response in plant-fungus interactions. In: Fraser RSS (ed) Recognition and response in plant-virus interaction, pp. 31–52. Springer-Verlag, Berlin

    Chapter  Google Scholar 

  • Mansfield JW and Bailey JA (1982) Phytoalexins: current problems and future prospects. In: JA Bailey and JW Mansfield (eds) pp. 319–322. Phytoalexins. Blackie, Glasgow

    Google Scholar 

  • Mansfield JW and Hutson RA (1980) Microscopical studies on fungal development and host responses in broad bean and tulip leaves inoculated with five species of Botrytis. Physiol Plant Pathol 17: 131–145

    Article  Google Scholar 

  • Mansfield JW and Richardson A (1981) The ultrastructure of interactions between Botrytis species and broad bean leaves. Physiol Plant Pathol 19: 41–48

    Article  Google Scholar 

  • Mansfield JW, Porter AEA and Smallman RV (1980) Dihydrowyerone derivatives as components of the furanoacetylenic phytoalexin response of tissues of Vicia faba. Phytochemistry 9: 1057–1061

    Article  Google Scholar 

  • Mansfield JW, Bennett MH, Bestwick CS and Woods-Tor AM (1997) Phenotypic variation in gene-for-gene interactions: variation from recognition to response. In: Crute IR, Burden JJ and Holub EB (eds) pp. 265–291 The gene-for-gene relationship in host-parasite interactions. CAB International, London UK

    Google Scholar 

  • Mari M, Iori R, Leoni O and Marchi A (1993) In vitro activity of glucosinolate-derived isothiocyanates against postharvest fruit pathogens. Ann appl Biol 123: 155–164

    Article  CAS  Google Scholar 

  • Matthews DE and VanEtten HD (1983) Detoxification of the phytoalexin pisatin by a fungal cytochrome P-450. Arch Biochem Biophys 224: 494–505

    Article  PubMed  CAS  Google Scholar 

  • Melton RE, Flegg LM, Brown JKM, Oliver RP, Daniels MJ and Osbourn AE (1998) Heterologous expression of Septoria lycopersicae tomatinase in Cladosporium fulvum: Effects on compatible and incompatible interactions with tomato seedlings. Molec Plant-Microbe Interact, 11: 228–235.

    Article  CAS  Google Scholar 

  • Miao VPW, Covert SF and VanEtten HD (1991) A fungal gene for antibiotic resistance on a dispensable (B’) chromosome. Science 254: 1773–1776

    Article  PubMed  CAS  Google Scholar 

  • Miao VPW and VanEtten HD (1992) Three genes for metabolism of the phytoalexin maackiain in the plant pathogen Nectria haematococca: Meiotic instability and relationship to a new gene for pisatin demethylase. Appl Environ Microbiol 58: 801–808

    PubMed  CAS  Google Scholar 

  • Mithen RF (1992) Leaf glucosinolate profiles and their relationship to pest and disease resistance in oilseed rape. Euphytica 63: 71–83

    Article  CAS  Google Scholar 

  • Mithen RF, Lewis BG and Fenwick GR (1986) In vitro activity of glucosinolates and their products against Leptosphaeria maculans. Trans Brit. Mycol. Soc. 87: 433–440

    Article  CAS  Google Scholar 

  • Moesta P, Soyedl U, Lindner B and Grisebach H (1982) Detection of glyceollin at the cellular level in infected soybean by laser microprobe mass analysis. Zeit Naturforsch 37c: 748–751

    CAS  Google Scholar 

  • Müller KO (1958) Studies on phytoalexins. 1. The formation and immunological significance of phytoalexin produced by Phaseolus vulgaris in response to infections with Sclerotinia fructicola and Phytophthora infestans. Aust J Biol Sci 11: 275–300

    Google Scholar 

  • Müller KO and Borger H (1940) Experimentelle Untersuchungen über die Phytophthora — Resistenz der Kartoffel — zugleich ein Beitrag zum Problem der ‘erworbenen Resistenz’ im Pflanzenreich. Arb Biol Anst Reichsanst (Berl) 23: 189–231

    Google Scholar 

  • Nicholson RL and Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Ann Rev Phytopathol 30: 369–380

    Article  CAS  Google Scholar 

  • Nisius H (1988) The stromacentre in plastids: An aggregation of β-glucosidase responsible for the activation of oat-leaf saponins. Planta 173: 474–481

    Article  CAS  Google Scholar 

  • O’Brien TP and McCully ME (1981) The study of plant structure: principles and selected methods. Termarcarphi Pty Ltd., Melbourne, Australia

    Google Scholar 

  • Oommen A, Dixon RA and Paiva NKL (1994) The elicitor-inducible alfalfa isoflavone reductase promoter confers different patterns of developmental expression in homologous and heterologous transgenic plants. Plant Cell 6: 1789–1803

    PubMed  CAS  Google Scholar 

  • Osbourn AE (1996a) Saponins and plant defence — a soap story. Trends Plant Sci 1: 4–9.

    Article  Google Scholar 

  • Osbourn AE (1996b) Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8: 1821–1831

    PubMed  CAS  Google Scholar 

  • Osbourn AE, Clarke BR, Dow JM and Daniels MJ (1991) Partial characterization of avenacinase from Gaeumannomyces graminis var. avenae. Physiol Mol Plant Pathol 38: 301–312

    Article  CAS  Google Scholar 

  • Osbourn AE, Clarke BR, Lunness P, Scott PR and Daniels MJ (1994) An oat species lacking avenacin is susceptible to infection by Gaeumannomyces graminis var. tritici. Physiol Mol Plant Pathol. 45: 457–467

    Article  CAS  Google Scholar 

  • Osbourn AE, Bowyer P, Lunness P, Clarke B and Daniels M (1995) Fungal pathogens of oat roots and tomato leaves employ closely related enzymes to detoxify host plant saponins. Mol Plant-Microbe Interact 8: 971–978

    Article  PubMed  CAS  Google Scholar 

  • Paxton JD (1981) Phytoalexins — a working redefinition. Phytopathol Z 101: 106–109.

    Article  Google Scholar 

  • Perrin DR and Bottomley W (1962) Studies on phytoalexins. V. The structure of pisatin from Pisum sativum L. J Am Chem Soc 84: 1919–1922

    Article  CAS  Google Scholar 

  • Pierce M and Essenberg M (1987) Localization of phytoalexins in fluorescent mesophyll cells isolated from bacterial blight-infected cotton cotyledons and separated from other cells by fluorescence-activated cell sorting. Physiol Mol Plant Pathol 31: 273–290

    Article  CAS  Google Scholar 

  • Pierce ML, Cover EC, Richardson PE, Scholes VE and Essenberg M (1996) Adequacy of cellular phytoalexin concentrations in hypersensitively responding cotton leaves. Physiol Mol Plant Pathol 48: 305–324

    Article  CAS  Google Scholar 

  • Prusky D and Plumbley RA (1992) Quiescent infections of Colletotrichum in tropical and subtropical fruits. In: Colletotrichum: biology, pathology and control (eds JA Bailey and MJ Jeger) pp 289–308, CAB International, Wallingford.

    Google Scholar 

  • Prusky D, Keen NT, Sims JJ and Midland SL (1982) Possible involvement of an antifungal compound in latency of Colletotrichum gloeosporoides in unripe avocado fruits. Phytopathology 72: 1578–1582

    Article  CAS  Google Scholar 

  • Prusky D, Kobiler I, Jacoby B, Sims JJ and Midland SL (1985) Effect of inhibitors of lipoxygenase activity and its possible relation to latency of Colletotrichum gloeosporioides on avocado fruits. Physiol Mol Plant Pathol 27: 269–279

    Article  CAS  Google Scholar 

  • Prusky D, Plumbley RA and Kobiler I (1991) Effect of CO2 treatment on the induction of antifungal diene in unripe avocado fruits. Physiol Mol Plant Pathol 39: 325–334

    Article  CAS  Google Scholar 

  • Rathmell WG and Smith DA (1980) Lack of activity of selected isoflavonoid phytoalexins as protectant fungicides. Pestic Sci 11: 568–572

    Article  CAS  Google Scholar 

  • Ride JP (1986) Induced structural defences in plants. In: Gould GW, Rhodes-Roberts ME, Charnley AK, Cooper RM and Board RG (eds) Natural antimicrobial systems in plants and animals, pp 159–165. University Press, Bath

    Google Scholar 

  • Rogers EE, Glazebrook J and Ausubel FM (1996) Mode of action of the Arabidopsis thaliana phytoalexin camalexin and its role in Arabidopsis-pathogen interactions. Mol Plant-Microbe Interact 9: 748–757

    Article  PubMed  CAS  Google Scholar 

  • Rossall S and Mansfield JW (1978) The activity of wyerone acid against Botrytis Ann appl Biol 89: 359–362

    Google Scholar 

  • Rossall S, Mansfield JW and Price NC (1977) The effect of reduced wyerone acid on the antifungal activity of the phytoalexin wyerone acid against Botrytis fabae. J Gen Microbiol 102: 203–205

    Article  CAS  Google Scholar 

  • Sandrock RW, Della-Penna D and VanEtten HD (1995) Purification and characterization of β2-tomatinase, an enzyme involved in the degradation of α-tomatine and isolation of the gene encoding β2-tomatinase from Septoria lycopersici. Mol Plant-Microbe Interact 8: 960–970

    Article  PubMed  CAS  Google Scholar 

  • Schäfer W, Straney D, Ciuffetti L, VanEtten HD and Yoder OC (1989) One enzyme makes a fungal pathogen but not a saprophyte, virulent on a new host plant. Science 246: 247–249

    Article  PubMed  Google Scholar 

  • Schönbeck F and Schlosser E (1976) Preformed substances as potential protectants. In Heitefuss R and Williams PH (eds) Encyclopedia of plant physiology Vol 4, pp 653–678. Springer-Verlag, Berlin

    Google Scholar 

  • Schönbeck F and Schroeder C (1972) Role of antimicrobial substances (tuliposides) in tulips attacked by Botrytis spp. Physiol Plant Pathol 2: 91–99

    Article  Google Scholar 

  • Slob A, Jekel B, de Jong B and Schlatmann, E (1975) On the occurrence of tuliposides in the Liliiflorae. Phytochemistry 14: 1997–2005

    Article  CAS  Google Scholar 

  • Snyder BA and Nicholson RL (1990) Synthesis of phytoalexins in sorghum as a site specific response to fungal ingress. Science 248: 1637–1639

    Article  PubMed  CAS  Google Scholar 

  • Snyder BA, Hipskind J, Butler LJ and Nicholson RL (1991) Accumulation of sorghum phytoalexins induced by Colletotrichum graminocola at the infection site. Physiol Mol Plant Pathol 39: 463–470

    Article  CAS  Google Scholar 

  • Steel CS and Drysdale RB (1988) Electrolyte leakage from plant and fungal tissues and disruption of liposome membranes by α-tomatine. Phytochemistry 27: 1025–1030

    Article  CAS  Google Scholar 

  • Stoessl A (1982) Biosynthesis of phytoalexins. In: Bailey JA and Mansfield JW (eds) Phytoalexins, pp 133–180. Blackie, Glasgow

    Google Scholar 

  • Swinburne TR (1983) Quiescent infections in post-harvest disease. In: Dennis C (ed) Post-harvest pathology of fruits and vegetables, pp 1–21. Academic Press, London

    Google Scholar 

  • Tahara S, Ingham JC, Nakahara S, Mizutani S, Mizutani J and Harborne JB (1984) Fungitoxic dihydrofuranoisoflavones and related compounds in white lupin, Lupinus albus Phytochemistry 23: 1889–1900

    Article  CAS  Google Scholar 

  • Tegtmeier KJ and VanEtten HD (1982) The role of pisatin tolerance and degradation in the virulence of Nectria haematococca on peas: a genetic analysis. Phytopathology 72: 608–612

    Article  CAS  Google Scholar 

  • Tepper CS, Albert FG and Anderson AJ (1989) Differential mRNA accumulation in three cultivars of bean in response to elicitors from Colletotrichum lindemuthianum. Physiol Mol Plant Pathol 34: 85–89

    Article  CAS  Google Scholar 

  • Tscheche R, Kammerer FJ, Wulff G and Schönbeck F (1978) Uber die antibiotisch wirksamen Substanzen der Tulpe (Tulipa geseriana). Tetrahedron Lett 6: 701–706

    Google Scholar 

  • Tsuji J, Jackson EP, Gage DA, Hammerschmidt R and Somerville SC (1992) Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syringae pv. syringae. Plant Physiol 98: 1304–1309

    Article  CAS  Google Scholar 

  • Turner EM (1953) The nature of resistance of oats to the take-all fungus. J Exp Bot 4: 264–271.

    Article  CAS  Google Scholar 

  • Turner EM (1961) An enzymic basis for pathogen specificity in Ophiobolus graminis J Exp Bot 12: 169–175

    Article  CAS  Google Scholar 

  • Tverskoy L, Dmitriev A, Kozlovsky A and Gradzinsky D (1991) Two phytoalexins from Allium cepa bulbs. Phytochemistry 30: 799

    Article  Google Scholar 

  • Van den Ackerveken G, Marois E and Bonas U (1996) Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 87: 1307–1316

    Article  PubMed  Google Scholar 

  • VanEtten HD, Matthews PS, Tegtmeier KJ, Dietert MF and Stein JI (1980) The association of pisatin tolerance and demethylation with virulence on pea in Nectria heamatococca. Physiol Plant Pathol 16: 257–268

    Article  CAS  Google Scholar 

  • VanEtten HD, Matthews DE and Smith DA (1982) Metabolism of phytoalexins. In: Bailey JA and Mansfield JW (eds) Phytoalexins, pp 181–217. Blackie, Glasgow

    Google Scholar 

  • VanEtten HD, Mansfield JW, Bailey JW and Farmer EE (1994) Letter to the editor: two classes of plant antibiotics: phytoalexins versus “phytoanticipins”. Plant Cell 6: 1191–1192

    PubMed  CAS  Google Scholar 

  • VanEtten HD, Sandrock RW, Wasmann CC, Soby SD, McCluskey K and Wang P (1995) Detoxification of phytoanticipins and phytoalexins by phytopathogenic fungi. Can J Bot 73: S518–S525

    Article  CAS  Google Scholar 

  • Verhoeff K (1974) Latent infections by fungi. Ann Rev Phytopathol 12: 99–110

    Article  CAS  Google Scholar 

  • Walker JC and Stahmann MA (1955) Chemical nature of disease resistance in plants. Ann Rev Plant Physiol 6: 351–366

    Article  CAS  Google Scholar 

  • Wang P and VanEtten HD (1992) Cloning and properties of a cyanide hydratase gene from the phytopathogenic fungus Gloeocercospora sorghi. Biochem Biophys Res Commun 187: 1048–1054

    Article  PubMed  CAS  Google Scholar 

  • Wasmann CC and VanEtten HD (1996) Transformation-mediated chromosome loss and disruption of a gene for pisatin demethylase decrease the virulence of Nectria haematococca on pea. Molec Plant-Microbe Interact 9: 793–803

    Article  CAS  Google Scholar 

  • Welle R, Schroeder G, Schiltz E, Grisebach H and Schröder J (1991) Induced plant responses to pathogen attack: analysis and heterologous expression of the key enzyme in the biosynthesis of phytoalexins in soybean (Glycine max. L.). Eur J Biochem 196: 423–430

    Article  PubMed  CAS  Google Scholar 

  • Weltring KM, Turgeon BG, Yoder OC and VanEtten HD (1988) Isolation of a phytoalexin-detoxification gene from the plant pathogenic fungus Nectria haematococca by detecting its expression in Aspergillus nidulans. Gene 68: 335–344

    Article  PubMed  CAS  Google Scholar 

  • Weltring KM, Schaub HP and Barz W (1995) Metabolism of pisatin stereoisomers by Ascochyta rabiei strains transformed with the pisatin demethylase of Nectria haematococca MPVI. Molec Plant-Microbe Interact 8: 499–505

    Article  CAS  Google Scholar 

  • Wood RKS (1967) Physiological Plant Pathology. Blackwell Scientific, Oxford.

    Google Scholar 

  • Wubben JP, Price KR, Daniels MJ and Osbourn AE (1996) Detoxification of oat leaf saponins by Septoria avenae. Phytopathology 86: 986–992

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mansfield, J.W. (2000). Antimicrobial Compounds and Resistance. In: Slusarenko, A.J., Fraser, R.S.S., van Loon, L.C. (eds) Mechanisms of Resistance to Plant Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3937-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3937-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0399-8

  • Online ISBN: 978-94-011-3937-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics