Polymer Phase Behavior: Todays Achievements and Tomorrows Needs

  • L. A. L. Kleintjens
Part of the NATO Science Series book series (NSSE, volume 366)


One of the key success factors in today’s polymers industry is the economy of scale. High pressure production units with a capacity up to 500,000 tonnes of polymer a year are being built. It goes without saying that thermodynamic optimization of such processes is a must, minor improvements will lead to significant cost savings. However, the thermodynamic models used in these industrial process optimizations are mostly of a semi-empirical nature. There are at least three reasons for this. In the first place, most of the process streams consist of at least 5 constituents (one of them being a (co)polymer with its intrinsic polydispersity). Secondly, almost all separation steps have to be carried out at an elevated pressure. And thirdly, polymer solutions are usually highly viscous. All transport phenomena and the settlement of thermodynamic equilibria are thus affected by this viscosity.


Cloud Point Polymer Blend Vinylidene Fluoride Liquid Crystalline Polymer Ethyl Acrylate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koningsveld R., Kleintjens L.A., (1971) Liquid — Liquid phase separation in Mullicomponent Polymer Systems X. Polystyrene-Cyclohexane, Macromolecules 4 637–641.CrossRefGoogle Scholar
  2. 2.
    Derham K., Goidsbrough J., Gordon M., (I974) Pulse-induced critical scattering (PICS) from polymer solutions, Pure Appl. Chem. 38, 97.Google Scholar
  3. 3.
    Derham K., Goidsbrough J., Gordon M., Koningsveld R., Kleintjens L.A., (1975) Liquid — liquid phase separation in multicomponent Polymer Systems XII, Molecular weight dependence of the pair-interaction parameter, Makromol. Chem. Suppl. 1. 401–414CrossRefGoogle Scholar
  4. 4.
    Karasz F., (1985) Glass transitions and compatibility; phase behavior in copolymer containing blends, in Polymer Blends and Mixtures, NATO ASI ser. 89, 25.Google Scholar
  5. 5.
    Vivifie P., Lazzaroni R., Lambin G., Bredas J., Atomic Force Microscopy Investigation of PC/PMMA blends, in ref 59 pag. 137Google Scholar
  6. 6.
    Butters M., Martens S., (1989)DSM Internal communication Google Scholar
  7. 7.
    Zeuner V., Lentz H., Kleintjens L.A., (1996) Pressure dependence of demixing behaviour in polymer blends 1. experimental procedure, Macromol. Symp 102, 337.CrossRefGoogle Scholar
  8. 8.
    Reid V., Kleintjens L. A., Cowie J., (1990) Miscibility of AB and CD copolymer blends, “Third European Symposium on Polymer Blends”, PRI press, C9Google Scholar
  9. 9.
    Suzuki, Y., Miyamoto, Y., Mtyaji, H., and Asai, K. (1982) Pressure Effects on Phase Diagrams in Mixtures of Poly (ethyl Acrylate) and Poly(vinylidene Fluoride) J. Polymer Scie., Polymer Lett. 20, 563.CrossRefGoogle Scholar
  10. 10.
    Aelmans N., Reid V., Shear-induced demixing of SMA/PMMA blends at high shear rates, in ref 59, pag. 153Google Scholar
  11. 11.
    Runt J., Jin L., Talibuddin S., Davis C.R., Crystalline homopolymer — copolymer blends: PTFE — poly [tetra fluoro ethylene -co — per fluoro (alkyl/vinyl ether)] in ref 59, pags 70, 73Google Scholar
  12. 12.
    Danchinov S., Shibanov Y., Godovsky Y., (1996), Morphology resulting from coupling of phase separation and glass transition in polymer blends, Macromol. Symp 112, 69.CrossRefGoogle Scholar
  13. 13.
    Kirschbaum R., van Dingeneo J., (1989), Advances in gel-spinning Technology and Dyneema fiber applications, Integration of Polymer Science and Technology 3, Elsevier Appl. Sci. Publ.Google Scholar
  14. 14.
    Berghmans H., (1988), Thermo reversible gelation of synthetic Polymers, Integration of Polymer Science and Technology 2, Elsevier Appl. Sci. Publ.Google Scholar
  15. 15.
    Frisch K.C. (1986) Recent Investigations of Interpenetrating Polymer Networks, Integration of Polymer Science and Technology 13, Ehevier AppLSci. Publ.Google Scholar
  16. 16.
    Flory P.J., (1953) Principles of polymer chemistry, Cornell Univ. Press Ithaca New YorkGoogle Scholar
  17. 17.
    Hildebrand J.H., Scott R.L., (1964) The solubility of non-electrolytes, Dover, NY.Google Scholar
  18. 18.
    Holten-Andersen J., Rasmussen P., Fredertslund A., Ind. Eng. Chem., Process, des. dev. (1986)Google Scholar
  19. 19.
    Staverman A.J., (1937), The Cohesive Energy of Liquid mixtures I. Rec. Trav. Chim., 56, 885.CrossRefGoogle Scholar
  20. 20.
    Koningsveld R., Stockmayer W.H., Kennedy J.W., Kleintjens L.A., (1974), Liquid — liquid phase separation in multicomponent Polymer Systems XI, dilute and concentrated polymer solutions in equilibrium. Macrornolecules 7, 73CrossRefGoogle Scholar
  21. 21.
    Muggins M.L., J. Phys. Chem. (1970), 74, 371 The Thermodynamic Properties of Liquids, including Solutions I Intermolecular Energies in Monotonie Liquids and Their Mixtures, (1971), 75, 1255 The Thermodynamic Properties of Liquids, including Solutions IV. The Entropy of Mixing., (1976), 80, 1317 Thermodynamic Properties of Liquids, Including Solutions 12. Dependence of Solution Properties on Properties of the Component Molecules.Google Scholar
  22. 22.
    Stroeks A., (1987) Engin. Thesis EindhovenGoogle Scholar
  23. 23.
    Fiory P.J., J. (1965) Statistical Thermodynamics of Liquid Mixtures, Am. Chem. Soc. 87, 1833Google Scholar
  24. 24.
    McMaster P., (1973), Aspects of Polymer -Polymer Thermodynamics, Macromolecules 6, 760.CrossRefGoogle Scholar
  25. 25.
    Patterson D., (1972), Role of free volume in polymer solution Thermodynamics, Pure Appl. Chem. 31, 133.CrossRefGoogle Scholar
  26. 26.
    Simha R. (1977), Configurational Thermodynamics of the Liquid and Glassy Polymeric Slates, Macromolecules 10, 1025CrossRefGoogle Scholar
  27. 27.
    Paul D.R. and Newman S. (1978), Eds. Polymer Blends, New York, Acad. Press, vol I, p. 115Google Scholar
  28. 28.
    Olabisi O., (1975), Polymer Compatibility by Gas-Liquid Chromatography, Macromolecules 9, 316.Google Scholar
  29. 29.
    Sanchez I.C., (1982) in Polymer Compatibility and Incompatibility, Harwood N.Y.Google Scholar
  30. 30.
    Koningsveld R., Kleintjens L.A.L., (1977), Thermodynamics of Polymer Mixtures, J. Pol. Sci; Pol.Symp 61, 221.CrossRefGoogle Scholar
  31. 31.
    Chem S., Economou I.G., Radosz M., (1992), Density-Tuned Polyolefin Equilibria. 2. Multicomponent Solutions of Alternating Poly(ethylene-propylene) in Subcritical and Supercritical Olefins. Experiment and SAFT Model, Macromoleculs 25., 4987.Google Scholar
  32. 32.
    Coleman M., Graf J., Painter P., Basel (1991), “Specific Interactions and the Mtscibility of Polymer Blends” Technomic Publ.Corp.Google Scholar
  33. 33.
    Kennis H.A.J., de Loos Th. W., de Swaan Arons J., van der Haegen R., Kleinljens L.A., (1990), The influence of N2 on the L/L phase behavior of n-hexane/polyethylene: exp. results and MFLG predictions, Chem.Eng.Sci., 45 (7) 1875.CrossRefGoogle Scholar
  34. 34.
    Simha R. and Branson H., Chem J., (1944), Theory of Chain Copolyraerization Reactions, Phys. 12, 253.Google Scholar
  35. 35.
    Stockmayer W.H., Moore Jr. L.D., Fixman M. and Epstein B.N., (1955), Colpolymers in Dilute Solution. I. Preliminary Results for Styrene-Methyl Methaaylate, J. Polym. Sci. 16. 517.CrossRefGoogle Scholar
  36. 36.
    Glöckner G. and Lohmann D., (I973) Zum Einfluss der Struktur von Copolymeren auf ihre Wechselwirkung mit Lösungsmitteln, Faserforsch. Textiltechn.24, 365, 25.Google Scholar
  37. 37.
    Reid V., (1988), Ph.D. Thesis, Stirling U.K.Google Scholar
  38. 38.
    Ten Brinke G., Karasz F.E. and MacKnight W.J., (1983), Phase Behavior in Copolymer Blends: Poly (2,6-dimethyl-1, 4-phenylene oxide) and Halogen-substituted Styrene Copolymers, Macromolecules 16, 1827.CrossRefGoogle Scholar
  39. 39.
    Koningsveld R., Kleintjens L.A. and Leblans-Vinck A.M., (1985), Liquid-Liquid phase separation in multicomponent polymer systems XXIV Thermodynamics of polymer blends, Ber Bunsenges. Phys. Chem. 89, 1234.CrossRefGoogle Scholar
  40. 40.
    Lentz H., Siegen Univ. (1982), private communication Google Scholar
  41. 41.
    Wells P.A., De Loos Th.W., Kieintjens L.A., (1993), Pressure Pulse Induced Critical Scattering; Spinodal and binodal curves for Pst/methyl/cyclohexane, Fluid Phase Equil 83., 3.Google Scholar
  42. 42.
    Zoller P., Bolli P., Pahud V., Ackermann H. (1976), Apparatus for measuring pressure-volometemperature reiatiooships of polymers to 350°C and 2200 kg/cm2, Rev. Sci. Instrum. 47 (8), 984.CrossRefGoogle Scholar
  43. 43.
    Schmidt M., Maurer F. (1996), Pressure-volume-temperature properties of poly(ethylene oxide)/ poly (methylmathacrylate) blends, in Proceedings European Symp. Polymer Blends, Maastricht, 1.Google Scholar
  44. 44.
    Maeda Y., Karasz F., MacKnight W., (1984), Effect of Pressure on Phase Behavior in Polymer Blends of Poly (2,6-Dimethyl-1, 4-Phenylene Oxide) and Poly (o-Fluorostyrene-co-p-FIuorostyrene) Copolymers, J. Appl. Pol. Scl. 32, 4423.CrossRefGoogle Scholar
  45. 45.
    Schwahn D., Janssen S., Frieiinghaus H., Mortensen K., (1996), Pressure effects in Polymer blends and diblock copolymers studied with neutron small angle scattering, in Proceeding Europ. Symp. Polymer Blends, Maastricht, 272.Google Scholar
  46. 46.
    Michel U. (1996), Diplom Thesis, TU SiegenGoogle Scholar
  47. 47.
    McHugh M.A. (1992), Supercritical fluid Fractionation of copolymers based on chemical composition and molecular weight, Proceedings, 8th Rolduc Polymer Meeting, 40.Google Scholar
  48. 48.
    Kleintjens L.A., (1989), Purification of Polymers by supercritical fluid extraction in processing machines, Integration of Pol. Sci. & Technology 3, Elsevier Appl. Sci., London, 91.Google Scholar
  49. 49.
    Lele A.K., Shine A.D. (1992), Morphology of Polymers Precipitated from a Supercritical Solvent, AIChE, J, 38 742.CrossRefGoogle Scholar
  50. 50.
    Kleintjens L.A. (1990), Extraction of Polymer Binders form ceramic greens by supercritical solvents, Proc. 2nd Int. Symp. High Pressure Chem. Eng., (Ed. Dechema) Erlangen, 201.Google Scholar
  51. 51.
    Saus W., Schollmayer E., Buschmann H.J.; European Pat. 92810343. 1Google Scholar
  52. 52.
    Maison D.W., Frulton J.L., Petersen R.C., Smith R.D. (1987), Rapid expansion of Supercritical Fluid Solutions: Solute Formation of Powders, Thin Films, and Fibers, Ind. Eng. Chem. Res. 26, 2298.CrossRefGoogle Scholar
  53. 53.
    Brennecke J.F., Notre Dame, (1992) private communication Google Scholar
  54. 54.
    Galli P., (1996), The reactor polymer alloys: the shifting of the frontier of polymer research, Macromol. Symp 112, 1.CrossRefGoogle Scholar
  55. 55.
    Girard-Reydet E., Pascault J.P., Sautereau H., In-situ studies of phase separation process in thermoplastic modified epoxy networks; TEM, SAXS and LS technics, in ref 59 pags 328, 528Google Scholar
  56. 56.
    Rösch J., Mülhaupt R., Michler G., (1996), Controlled architectures and property synergismes of polypropene/polyamide 6 blends prepared via reactive processing, Macromol. Symp 112, 141.CrossRefGoogle Scholar
  57. 57.
    Koning C., Bruls W., Op den Buysch F., v.d. Vondervoort L. (1996), Reactive compatibilization of poiy(styrene-co maleic anhydride)/poly (phenylene oxide) blends, Macromol. Symp 112, 167.CrossRefGoogle Scholar
  58. 58.
    Meijer H., Venderbosch R., Goossens J., Lemstra P., Processing of Infratable polymers using reactive solvents, in ref 59, 525.Google Scholar
  59. 59.
    Kleintjens L.A.L., (1996), European Symposium on Polymer Blends Maastricht, Proceedings Ed.Google Scholar
  60. 60.
    Wenz G., Keller B., (1992), Angew. Chem. Int. Ed. Engl. 31, 325.Google Scholar
  61. 61.
    Amabilino D.B., Parsons I.W., Stoddard J.F., (1994), Polyrotaxanes, Trends in Polym. Sci. 2, 146.Google Scholar
  62. 62.
    Platé N.A., Shibaev V.P., (1985), Comb-shaped Polymers and Liquid-Crystals, Plenum, New YorkGoogle Scholar
  63. 63.
    Tomalia D.A., Naylor A.M., Goddard W.A., (1990), Starburst-Dendrimere: Kontrolle von Grösse, Gestalt, Oberflächenchemie, Topologie und Flexibilität beim Obergang von Atomen zu makroskopischer Materie. Angew. Chem. 102, 119–157.CrossRefGoogle Scholar
  64. 64.
    Szwarc M., van Beylen M, 1993, Ionic Polymerization and Living Polymers, Chapman and Hall, New York.Google Scholar
  65. 65.
    Kaptein B., Monaco V., Broxterman Q.B., Schoemaker H.E., Kamphuis J. (1995), Synthesis of dipeptides containing α-substituted amino acids; their use as chiral ligands in Lewis-acid-catalyzed reactions, Recl.Trav.Chim. Pays-Bas, 114, 231–238.CrossRefGoogle Scholar
  66. 66.
    de Vries J.G., de Boer R.P., Hogeweg M., Gielens E., (1996), Preparation of d, l-Phenylalanine by Amidocarbonylation of Benzyl Chloride, J. Org. Chem. 61, 1842–1846.CrossRefGoogle Scholar
  67. 67.
    de Brabander E.M.M., Meijer E.W., (1993), Polypropylene imine) Dendrimers: Large-Scale Synthesis by Helereogeneously Catalyzed Hydrogenations, Angew.Chem.Int.Ed.Engl. 32, 1308–11.CrossRefGoogle Scholar
  68. 68.
    Huff J., Preece J.A., Stoddard J.F., (1996), Towards sypramolecular polymers, Macromol.Symp. 102, 1–8.CrossRefGoogle Scholar
  69. 69.
    Sybesma R.P., Beijer F.H., Brunsveld L., Folmer B.J.B., Hirschberg J.H.K.K., Lange R.F.M., Lowe J.K.L., Meijer E.W., (1997), Reversible Polymers Formed from Self-Complementary Monomers Using Quadruple Hydrogen Bonding, Science 278, 1601.CrossRefGoogle Scholar
  70. 70.
    van de Graats A.M., Warman J.M., Müllen K., Geerts Y., Brand J.D., (1998) Rapid Charge Transport Along Self-assembling Graphitic Nanowires., Adv. Matter 10, 36–38.CrossRefGoogle Scholar
  71. 71.
    Katsuma K., Shirota Y., (1998), A Novel Class of π-Electron Dendrimers for Thermally and Morphologically stable amorphous Molecular Materials, Adv. Matter, 10, 223–226.CrossRefGoogle Scholar
  72. 72.
    Baars M.W.P.L., Froehling P.E., Meijer E.W., (1997), Liquid-Liquid extractions using poly(propylene imine) dendrimers with an apolar periphery. Chem. Commun 1959–1960.Google Scholar
  73. 73.
    Tsukruk V.V., (1998), Dendritic Macromolecules at Interfaces, Adv.Mater 10, 253–257.CrossRefGoogle Scholar
  74. 74.
    Chemistry, Europe & the Future, report prepared by AlIChemE (alliance for Chemical Sciences and Technologies in Europe (1997) in a combined effort of CEFIC, CERC3, COST, ECCC/FECS and EFCE).Google Scholar
  75. 75.
    van der Ent L., (1998), Ultrapuur water voor groeiende chipsproductie, Singapor kiest membraanonderzoek, Toegepaste Wetenschap 14–15.Google Scholar
  76. 76.
    Put J., (1998), How green are petro-olymers going to be?, Macromol. Symp. 127, 1–6.CrossRefGoogle Scholar
  77. 77.
    Super M., Berluche E., Costello C., Beckman E., (1998), Copolymerisation of CO2 and Cyclohexane oxide, Macromol. Symp. 127, 89.CrossRefGoogle Scholar
  78. 78.
    BRITE/Euram Project (1997–2000) “Polymerization and Polymer Modification in Supercritical FluidsGoogle Scholar
  79. 79.
    Japanese (1990–1999) “New Sunshine Programme 5.4.4.” Google Scholar
  80. 80.
    Kraft M.R.B., Thesis Ph.D., (1997) Eindhoven Univ.Google Scholar
  81. 81.
    Huck W., Meyer E.W., (1997) Eindhoven, private communication.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • L. A. L. Kleintjens
    • 1
  1. 1.DSM ResearchGeleenThe Netherlands

Personalised recommendations