Advertisement

Theory and Simulation of Colloid and Interface Science in Supercritical Fluids

  • J. C. Meredith
  • K. P. Johnston
Chapter
  • 750 Downloads
Part of the NATO Science Series book series (NSSE, volume 366)

Abstract

The unique density dependence of fluid properties makes supercritical fluids attractive as solvents for colloids including microemulsions, emulsions, and latexes, as discussed in recent reviews [1–4]. The first generation of research involving colloids in supercritical fluids addressed water-in-alkane microemulsions, for fluids such as ethaneaed propane[2, 5]. The effect of pressure on the droplet size, interdroplet interactions[2] and partitioning of the surfactant between phases was determined experimentally [5] and with a lattice fluid self-consistent field theory[6]. The theory was also used to understand how grafted chains provide steric stabilization of emulsionsaed latexes.

Keywords

Monte Carlo Phase Behavior Supercritical Fluid Lower Critical Solution Temperature Supercritical Carbon Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartscherer, K. A., Renon, H. and Minier, M. (1995) Microemulsions in Compressible Fluids — A Review, Fluid Phase Equilibria 107, 93–150.CrossRefGoogle Scholar
  2. 2.
    Fulton, J. L. and Smith, R. D. (1988) Reverse Micelle and Microemulsion Phases in Supercritical Fluids, J. Phys. Chem. 92, 2903–2907.CrossRefGoogle Scholar
  3. 2.
    Fulton, J. L. and Smith, R. D. (1988) Reverse Micelle and Microemulsion Phases in Supercritical Fluids, J. Phys. Chem. 92, 2903–2907.CrossRefGoogle Scholar
  4. 2.
    Fulton, J. L. and Smith, R. D. (1988) Reverse Micelle and Microemulsion Phases in Supercritical Fluids, J. Phys. Chem. 92, 2903–2907.CrossRefGoogle Scholar
  5. 5.
    Johnston, K. P., McFann, G. and Lemert, R. M. (1989) Pressure Tuning of Reverse Micelles for Adjustable Solvation of Hydrophiles in Supercritical Fluids., Am. Chem. Soc. Symp. Ser. 406, 140–464.Google Scholar
  6. 6.
    Peck, D. G. and Johnston, K. P. (1993) Prediction of interfacial properties in microemulsions: The lattice fluid self-consistent field theory, J. Phys. Chem. 97, 5661–67.CrossRefGoogle Scholar
  7. 7.
    Johnston, K. P., Harrison, K. L., Clarke, M. J., Howdle, S. M., Heitz, M. P., Bright, F. V., Carlier, C. and Randolph, T. W. (1996) Water-in-carboe dioxide microemulsioes: A new environment for hydrophiles including proteins, Science 271, 624.CrossRefGoogle Scholar
  8. 8.
    Harrison, K. L., Johnston, K. P. and Sanchez, I. C. (1996) Effect of Surfactants on the Interfacial Tension Between Supercritical Carbon Dioxide and Polyethylene Glycol, Langmuir 12, 2637–2644.CrossRefGoogle Scholar
  9. 9.
    O’Neill, M. L., Yates, M. Z., Johnston, K. P., Wilkinson, S. P., Canelas, D. A., Betts, D. E. and DeSimone, J. M. (1997) Emulsion Stabilization and Flocculation in CO2: I. Turbidimetry and Tensiometry, Macromolecules 30, 5050–59.CrossRefGoogle Scholar
  10. 10.
    Yates, M. Z., O’Neill, M. L., Johnston, K. P., Webber, S., Canales, D. A., Betts, D. A. and DeSimone, J. M. (1997) Emulsion Stabilization and Flocculation in CO2: II. Dynamic Light Scattering, Macromolecules 30, 5060–67.CrossRefGoogle Scholar
  11. 11.
    Yazdi, A. V., Lepilleur, C., Singley, E. J., W., L., Adamsky, F. A., Enick, R. M. and Beckman, E. J. (1996) Highly carbon dioxide soluble surfactants, dispersants, and chelating agents, Fluid Phase Equilibria 117, 297–303.CrossRefGoogle Scholar
  12. 11.
    Yazdi, A. V., Lepilleur, C., Singley, E. J., W., L., Adamsky, F. A., Enick, R. M. and Beckman, E. J. (1996) Highly carbon dioxide soluble surfactants, dispersants, and chelating agents, Fluid Phase Equilibria 117, 297–303.CrossRefGoogle Scholar
  13. 13.
    DeSimoee, J. M., Maury, E. E., Menceloglu, Y. Z., McClain, J. B., Romack, T. J. and Combes, J. R. (1994) Dispersion polymerizations in supercritical carbon dioxide, Science 265, 356–359.CrossRefGoogle Scholar
  14. 14.
    Hsiao, Y.-L., Maury, E. E., M., D. J., Mawson, S. and Johnston, K. P. (1995) Dispersion Polymerization of Methyl Methacrylate Stabilized with Poly(1,1-dihydroperfluorooctyl acrylate) in Supercritical Carbon Dioxide, Macromoiecules 28, 8159.CrossRefGoogle Scholar
  15. 15.
    Lepilleur, C. and Beckman, E. J. (1997) Dispersion Polymerization of Methyl Methacrylate in Supercritical CO2, Macromoiecules 30, 745–756.CrossRefGoogle Scholar
  16. 16.
    O’Neill M. L., Yates, M. Z., Johnston, K. P., Smith, C. D. and Wilkinson, S. P. (1998) Dispersion Polymerization in Supercritical CO2 with Siloxane-based Macromonomer: 1. The Particle Growth Region, Macromoiecules 31, 2838–2847.CrossRefGoogle Scholar
  17. 17.
    O’Neill, M. L., Yates, M. Z., Johnston, K. P., Smith, C. D. and Wilkinson, S. P. (1998) Dispersion Polymerization in Supercritical CO2 with Siloxane-based Macromonomer: 2. The Particle Formation Region, Macromoiecules 31, 2848–2856.CrossRefGoogle Scholar
  18. 18.
    Adamsky, F. A. and Beckman, E. J. (1994) Inverse emulsion polymerization of acrylamide in supercritical carbon dioxide, Macromoiecules 27, 312–314.CrossRefGoogle Scholar
  19. 19.
    Quadir, M. A., Snook, R., Gilbert, R. G. and DeSimone, J. M. (1997) Emulsion polymerization in a hybrid carbon dioxide/aqueous medium, Macromoiecules 30, 6015–23.CrossRefGoogle Scholar
  20. 20.
    Jacobsen, G., Lee, T. and Johnston, K. P. (1998) Reactions in emulsions in supercritical CO2, Langmuir, in preparation.Google Scholar
  21. 21.
    Mawson, S., Yates, M. Z., O’Neill, M. L. and Johnston, K. P. (1997) Stabilized polymer microparticles by precipitation with a compressed fluid antisolvent. II. Poly(propyleneoxide) and poly(butylene-oxide) based copolymers, Langmuir 13, 1519–1528.CrossRefGoogle Scholar
  22. 22.
    Mawson, S., Johnston, K. P., DeSimone, J. M., Betts, D. E. and McClain, J. B. (1997) Surfactant Stabilized Microparticles by Precipitation with a Compressed Fluid Antisolvent. I. Fluoroacrylate Based Surfactants, Macromoiecules 30, 71.CrossRefGoogle Scholar
  23. 23.
    Mawson, S., Johnston, K. P., Combes, J. R. and DeSimone, J. M. (1995) Formation of Poly(1,2,2,-tetrahydroperfluorodecyl acrylate) submicron fibers and particles from supercritical carbon dioxide solutions, Macromoiecules 28, 3182–3191.CrossRefGoogle Scholar
  24. 24.
    Hunter, R. J. (1993) Introduction to Modern Colloid Science, Oxford University, Oxford.Google Scholar
  25. 25.
    O’Neill, M. L., Cao, Q., Fang, M., Johnston, K. P., Wilkinson, S. P., Smith, C. D., Kerschner, J. L. and Jureller, S. H. (1998) Solubility of Homopolymers and Copolymers in Carbon Dioxide, Ind. Eng. Chem. Res. 37, 3067–79.CrossRefGoogle Scholar
  26. 26.
    Kazarian, S. G., Vincent, M. F., Bright, F. V., Liotta, C. L. and Eckert, C. A. (1996) Specific intermolecular interaction of carbon dioxide with polymers, J. Am. Chem. Soc. 118, 1729–1736.CrossRefGoogle Scholar
  27. 27.
    Meredith, J. C., Johnston, K. P., Seminario, J. M, Kazarian, S. G. and Eckert, C. A. (1996) Quantitative equilibrium constants between CO2 and Lewis Bases from FTIR spectroscopy, J. Phys. Chem. 100, 10837–48.CrossRefGoogle Scholar
  28. 28.
    Kiran, E. and Zhuang, W. (1997) Miscibility and phase separation of polymers in near- and supercritical fluids, ACS Symp. Ser. 670, 2–36.CrossRefGoogle Scholar
  29. 29.
    Merz, L. and Muth, O. (1996) Solubility, extraction and modification of polymers and polymer additives in supercritical carbon dioxide, Process Tecknol. Proc. 12, 373–78.CrossRefGoogle Scholar
  30. 30.
    Rindfleisch, F., DiNoia, T. and McHugh, M. (1996) Solubility of Polymers and Copolymers in Supercritical CO2, J. Phys. Chem. 38, 15581–87.CrossRefGoogle Scholar
  31. 31.
    Suresh, S. J., Enick, R. M. and Beckman, E. J. (1994) Phase Behavior of Nylon 6/Trifluoroethanol/Carbon Dioxide Mixtures, Macromoiecules 27, 348–356.CrossRefGoogle Scholar
  32. 32.
    Takishima, S., O’Neill, M. L. and Johnston, K. P. (1997) Solubility of Block Copolymer Surfactants in Compressed CO2 Using a Lattice Fluid Hydrogen Bonding Model, Ind. Eng. Chem. Res. 36, 2821–2833.CrossRefGoogle Scholar
  33. 33.
    Singley, E. J., Liu, W. and Beckman, E. J. (1997) Phase Behavior and Emulsion Formation of Novel Fluoroether Amphiphiles in Carbon Dioxide, Fluid Phase Equilibria 128, 199–219.CrossRefGoogle Scholar
  34. 34.
    Newman, D. A., Hoefling, T. A., Beitle, R. R., Beckman, E. J. and Eeick, R. M. (1993) Phase Behavior of Fiuoroether-Functional Amphiphiles in Supercritical Carbon Dioxide, J. Supercritical Fluids 6, 205–210.CrossRefGoogle Scholar
  35. 35.
    Hoefling, T. A., Beitle, R. R.t Enick, R. M. and Beckman, E. J. (1993) Design and synthesis of highly CO2-soluble surfactants and chelating agents, Fluid Phase Equilibria 83, 203–212.Google Scholar
  36. 36.
    Kiran, E., Zhtiaeg., W. (1992) Solubility of Polyethylene in n-pentane at High Pressures, Polymer 33, 5459–5263.Google Scholar
  37. 37.
    Meilchen, M. A., Hasch, B. M. and McHugh, M. A. (1991) Effect of Copolymer Composition on the Phase Behavior of Mixtures of Poly(ethylene-co-methyl acrylate) with Propane and Chlorodifluoromethane, Macromolecules 24, 4974–4982.CrossRefGoogle Scholar
  38. 38.
    Lee, S.-H., LoStracco, M. A. and McHugh, M. A. (1994) High-Pressure, Molecular Weight-Dependent Behavior of (Co)polymer-Solvent Mixtures: Experiments and Modelling, Macromolecules 27, 4652–4658.CrossRefGoogle Scholar
  39. 39.
    Folie, B. and Radosz, M. (1995) Phase Equilibria in High-Pressure Polyethylene Technology, Ind. Eng. Chem. Res. 34, 1501.CrossRefGoogle Scholar
  40. 40.
    Sanchez, I. C. (1987) in Encyclopedia of Physical Science and Technology, Academic Press, New York, pp. 1–18.Google Scholar
  41. 41.
    Sanchez, I. C. and Lacombe, R. H. (1976) An elementary molecular theory of classical fluids. Pure fluids, J. Phys. Chem. 80, 2352–2362.CrossRefGoogle Scholar
  42. 42.
    Sanchez, I. C. and Panayiotou, C. G. (1993) in Models for Thermodynamic and Phase Equilibria Calculations, ed. S. Sandier, Dekker, New York, pp. 187–285.Google Scholar
  43. 43.
    Xioeg, Y. and Kiran, E. (1995) Comparison of Sanchez-Lacombe and SAFT model in predicting solubility of polyethylene in high-pressure fluids, J. Appl. Polym. Sci. 55, 1805–18.CrossRefGoogle Scholar
  44. 44.
    Kiran, E., Xiong, Y. and Zhuang, W. (1993) Modeling Polyethylene Solutions in Near and Supercritical Fluids Using the Sanchez-Lacombe Model, The Journal of Supercritical Fluids 6, 193–203.CrossRefGoogle Scholar
  45. 45.
    Luna-Barcenas, G., Mawson, S., Takishima, S., DeSimone, J. M., Sanchez, I. C. and Johnston, K. P. (1998) Phase Behavior of Poly(1, 1-dihydroherfluorooctylacrylate) in Supercritical Carbon Dioxide, Fluid Phase Equilibria 146, 325–337.CrossRefGoogle Scholar
  46. 46.
    Banaszak, M., Chen, C. K. and Radosz, M. (1996) Copolymer SAFT equation of state. 1. Thermodynamic perturbation theory extended to heterobonded chains, Macromolecules 29, 6481–6486.CrossRefGoogle Scholar
  47. 47.
    Chang-keng Chen, M. R. (1993) Phase Equilibria in Polymer Solutions. Block-Algebra, Simultaneous Flash Algorithm Couplled with SAFT equation of State, Applied to Single-Stage Supercritical Antisolvent Fractionation of Polyethylene, Ind. Eng. Chem. Res. 32, 3123.CrossRefGoogle Scholar
  48. 48.
    Gregg, C. J. (1994) Phase Behavior of Telechelic Polyisobutylene in …, J. Phys. Chem. 98, 10634.CrossRefGoogle Scholar
  49. 49.
    Saeki, S. (1997) Calculation of the phase diagram of polymer solution over supercritical fluid region based on the Patterson-Delmas theory of corresponding state, Fluid Phase Equilib. 136, 87–92.CrossRefGoogle Scholar
  50. 50.
    Xiong, Y. and Kiran, E. (1995) Miscibility, density and viscosity of poly(dimethylsiloxane) in supercritical carbon dioxide, Polymer 36, 4817–4826.CrossRefGoogle Scholar
  51. 51.
    Gupta, R. B., Panayoitou, C. G., Sanches, I. C. and Johnston, K. P. (1992) Theory of Hydrogen Bonding in Supercritical Fluids, 38, 1243–4253.Google Scholar
  52. 52.
    Cece, A., Jureller, S. H., Kerschner, J. L. and Moschner, K. F. (1996) Molecular modeling approach for contrasting the interaction of ethane and hexafluoroethane with carbon dioxide, J. Phys. Chem. 100, 7435–39.CrossRefGoogle Scholar
  53. 53.
    Diep, P., Jordan, K. D., Johnson, J. K. and Beckman, E. J. (1998) CO2-fluorocarboe and COi-hydrocarbon interactions from first-principles calculations, J. Phys. Chem. 102, 2231–36.CrossRefGoogle Scholar
  54. 54.
    Terns, A. F. and Samulski, E. T. (1996) Spatial distribution functions: liquid CH3CN and CO2, Chem. Phys. Lett. 251, 157–63.CrossRefGoogle Scholar
  55. 55.
    Battersby, P., Dean, J. R., Hitchen, S. M., Tomlinson, W. R. and Myers, P. M. (1994) Interaction Between Carbon Dioxide and Napthalene: A Molecular Modeling Approach, J. Comput. Chem. 15, 580–587.CrossRefGoogle Scholar
  56. 56.
    Rowley, R. L., Oscarson, J. L., Slater, P. N., Giles, N. F., Izatt, R. M. and Tolley, W. K. (1989) Molecular-Dynamics Simulations of Excess Enthalpies in Mixtures of Supercritical Carbon Dioxide and Neopentane, Fl. Phase Equil. 53, 167–175.CrossRefGoogle Scholar
  57. 57.
    Zhu, S. B. and Robinson, G. W. (1989) Molecular dynamics study of liquid carbon dioxide, Comput. Phys. Commun. 52, 317.CrossRefGoogle Scholar
  58. 58.
    Fulton, J. L., Pfeed, D. M., McClain, J. B., Romack, T. J., Maury, E. E., Combes, J. R., Samulski, E. T., DeSimone, J. M. and Capel, M. (1995) X-Ray scattering of polymers in CO2, Langmuir 11, 4241.CrossRefGoogle Scholar
  59. 59.
    McClain, J. B., Londono, D., Combes, J. R., Romack, T. J., Canelas, D. P., Betts, D. E., Wignall, G. D., Samulski, E. T. and DeSimone, J. M. (1996) Solution properties of a CO2-soluble fluouroether via small ange neutron scattering, J. Am. Chem. Soc. 118, 917–18.CrossRefGoogle Scholar
  60. 60.
    Luna-Barcenas, G., Gromov, D., Meredith, J. C., Sanchez, I. C., Johnston, K. P. and dePablo, J. J. (1997) Polymer chain collapse near the lower critical solution temperature, Chemical Physics Letters 278, 302–306.CrossRefGoogle Scholar
  61. 61.
    Luna-Barcenas, G., Meredith, J. C., Gromov, D. G., Sanchez, I. C., de Pablo, J. J. and Johnston, K. P. (1997) Relationship between polymer conformation and phase behavior near the lower critical solution temperature, J. Chem. Phys. 107, 1–11.CrossRefGoogle Scholar
  62. 62.
    Gromov, D. G., de Pablo, J. J., Luna-Bareenas, G., Sanchez, I. C. and Johnston, K. P. (1998) Simulation of phase equilibria for polymer-supercritical solvent mixtures, J. Chem. Phys. 108, 4647.CrossRefGoogle Scholar
  63. 62.
    Gromov, D. G., de Pablo, J. J., Luna-Bareenas, G., Sanchez, I. C. and Johnston, K. P. (1998) Simulation of phase equilibria for polymer-supercritical solvent mixtures, J. Chem. Phys. 108, 4647.CrossRefGoogle Scholar
  64. 62.
    Gromov, D. G., de Pablo, J. J., Luna-Bareenas, G., Sanchez, I. C. and Johnston, K. P. (1998) Simulation of phase equilibria for polymer-supercritical solvent mixtures, J. Chem. Phys. 108, 4647.CrossRefGoogle Scholar
  65. 65.
    McClain, J. B., Betts, D. E., Canelas, D. A., Samulski, E. T., DeSimone, J. M., Londono, J. D., Cochran, H. D., Wignall, G. D., Chillura-Martino, D. and Triolo, R. (1996) Design of Nonionic Surfactants for Supercritical Carbon Dioxide, Science 274, 2049.CrossRefGoogle Scholar
  66. 66.
    Zielinski, R. G., Kline, S. R., Kaler, E. W. and Rosov, N. (1997) A Small Angle Neutron Scattering Study of Water in Carbon Dioxide Emulsions, Langmuir 13, 3934–3937.CrossRefGoogle Scholar
  67. 67.
    Guan, Z. and DeSimone, J. M. (1994) Fluorocarbon-Based Heterophase Polymeric Materials. 1. Block Copolymer Surfactants for Carbon Dioxide Applications, Macromolecules 27, 5527–5532.CrossRefGoogle Scholar
  68. 68.
    Napper, D. H. (1983) Polymeric Stabilization of Colloidal Dispersions, Academic Press, London.Google Scholar
  69. 69.
    Fleer, G. J., Cohen Stuart, M. A., Scheutjens, J. M. H. M., Cosgrove, T. and Vincent, B. (1993) in Polymers at Interfaces, Chapman and Hall, London, pp. 282.Google Scholar
  70. 70.
    Peck, D. G. and Johnston, K. P. (1993) Lattice fluid self consistent field theory of surfaces with anchored chains, Macromolecules 26, 1537–1545.CrossRefGoogle Scholar
  71. 71.
    Meredith, J. C. and Johnston, K. P. (1998) Theory of polymer adsorption and colloid stabilization in supercritical fluids 1. Homopolymer stabilizers, Macromolecules 31, 5507–5517.CrossRefGoogle Scholar
  72. 72.
    Meredith, J. C. and Johnston, K. P. (1998) Theory of polymer adsorption and colloid stabilization in supercritical fluids 2. Copolymer and grafted stabilizers, Macromolecules 31, 5518–5528.CrossRefGoogle Scholar
  73. 73.
    Grest, G. S. and Murat, M. (1995) in Monte Carlo and Molecular Dynamics Simulations in Polymer Science, ed. K. Binder, Oxford University, New York.Google Scholar
  74. 74.
    Dickman, R. and Hong, D. C. (1991) New simulation method for grafted polymeric brashes, J. Chem. Phys. 95, 4650–4655.CrossRefGoogle Scholar
  75. 75.
    Murat, M. and Grest, G. S. (1989) Interaction between grafted polymeric brushes: A molecular dynamics study, Phys. Rev. Lett. 63, 1074–1077.CrossRefGoogle Scholar
  76. 76.
    Tan, Z. and Gubbies, K. E. (1990) Adsorption in carbon nanopores at supercritical temperatures, J. Phys. Chem. 94, 6061–6069.CrossRefGoogle Scholar
  77. 77.
    Meredith, J. C., Sanchez, I. C., Johnston, K. P. and de Pablo, J. J. (1998) Simulation of Structure and Forces for Surfaces Coated with Grafted Chains in a Compressible Solvent, J. Chem. Phys. 109, 6424–6434.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • J. C. Meredith
    • 1
  • K. P. Johnston
    • 1
  1. 1.Department of Chemical EngineeringUniversity of Texas at AustinAustinUSA

Personalised recommendations