Critical and Crossover Phenomena in Fluids and Fluid Mixtures

  • M. A. Anisimov
  • J. V. Sengers
Part of the NATO Science Series book series (NSSE, volume 366)


The thermodynamic behavior of fluids near critical points is drastically different from the critical behavior implied by classical equations of state. This difference is caused by long-range fluctuations of the order parameter associated with the critical phase transition. In one-component fluids near the vapor-liquid critical point the order parameter may be identified with the density or in “incompressible” liquid mixtures near the consolute point with the concentration. To account for the effects of the critical fluctuations in practice, a crossover theory has been developed to bridge the gap between nonclassical critical behavior asymptotically close to the critical point and classical behavior further away from the critical point. We shall demonstrate how this theory can be used to incorporate the effects of critical fluctuations into classical cubic equations of state like the van der Waals equation. Furthermore, we shall show how the crossover theory can be applied to represent the thermodynamic properties of one-component fluids as well as phase-equilibria properties of liquid mixtures including closed solubility loops. We shall also consider crossover critical phenomena in complex fluids, such as solutions of electrolytes and polymer solutions. When the structure of a complex fluid is characterized by a nanoscopic or mesoscopic length scale which is comparable to the size of the critical fluctuations, a specific sharp and even nonmonotonic crossover from classical behavior to asymptotic critical behavior is observed. In polymer solutions the crossover temperature corresponds to a state where the correlation length is equal to the radius of gyration of the polymer molecules. A similarity between crossover critical phenomena in polymer solutions and in some ionic systems is also discussed.


Critical Behavior Classical Behavior Coexistence Curve Simple Fluid Fluid Phase Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fisher, M.E. (1988) Scaling, universality, and renormalization group theory, in F.J.W. Hahne (ed.), Critical Phenomena, Lecture Notes in Physics, Springer, Berlin, 186, 1–139.Google Scholar
  2. 2.
    Sengers, J.V. and Levelt Sengers, J.M.H. (1978) Critical phenomena in classical fluids, in C.A. Croxton (ed.), Progress in Liquid Physics, Wiley, New York, 103–173.Google Scholar
  3. 3.
    Chen, Z.Y., Albright, P.C., and Sengers, J.V. (1990) Crossover from singular critical to regular classical thermodynaniic behavior of fluids, Phys. Rev, A 41, 3161–3177.CrossRefGoogle Scholar
  4. 4.
    Chen, Z.Y., Abbaci, A., Tang, S., and Sengers, J.V. (1990) Global thermodynamic behavior of fluids in the critical region, Phys. Rev. A 42, 4470–4484.CrossRefGoogle Scholar
  5. 5.
    Levy, M., Le Guillou, J.C., and Zinn-Justin, J. (eds.) (1982) Phase Transitions: Cargèse 1980, Plenum, New York.Google Scholar
  6. 6.
    Sengers, J.V. and Levelt Sengers, J.M.H. (1986) Thermodynamic behavior of fluids near the critical point, Ann. Rev. Phys. Chem. 37, 189–222.CrossRefGoogle Scholar
  7. 7.
    Anisimov, M.A. (1991) Critical Phenomena in Liquids and Liquid Crystals, Gordon and Breach, Philadelphia.Google Scholar
  8. 8.
    Fisher, M.E. and Liu, A.J. (1989) The three-dimensional Ising model revisited numerically, Physica A 156, 35–76.CrossRefGoogle Scholar
  9. 9.
    Guida, R. and Zinn-Justin, J. (1997) 3d Ising model: The scaling equation of state, Nuclear Physics B 489, 626–652.Google Scholar
  10. 10.
    Fisher, M.E. (1964) Correlation functions and the critical region of simple fluids, J. Math. Phys. 5, 944–962.CrossRefGoogle Scholar
  11. 11.
    Landau, L.D. and Lifshitz, E.M. (1958) Statistical Physics, Pergamon, New York.Google Scholar
  12. 12.
    Lifschitz, M., Dudowicz, J., and Freed, K.F. (1994) Limits of validity for mean-field description of compressible binary polymer blends, J. Chem. Phys. 100, 3957–3978.CrossRefGoogle Scholar
  13. 13.
    Anisimov, M.A., Kiselev, S.B., Sengers, J.V., and Tang, S. (1992) Crossover approach to global critical phenomena in fluids, Physica A 188, 487–525.CrossRefGoogle Scholar
  14. 14.
    Nicoll, J.F. and Bhattacharjee, J.K. (1981) Crossover functions by renormalization group matching: O(e2) results, Phys. Rev. B 23, 389–401.CrossRefGoogle Scholar
  15. 15.
    Nicoll, J.F. and Albright, P.C. (1985) Crossover functions by renormalization-group matching: Three-loop results, Phys. Rev. B 31, 4576–4589.CrossRefGoogle Scholar
  16. 16.
    Le Guillou, J.C. and Zinn-Justin, J. (1987) Accurate critical exponents for Ising like systems in non-integer dimensions, J. Phys. (Paris) 48, 19–24.CrossRefGoogle Scholar
  17. 17.
    Liu, A.J. and Fisher, M.E. (1990) On the corrections to scaling in three-dimensional Ising models, J. Stat. Phys. 58, 431–442.CrossRefGoogle Scholar
  18. 18.
    Tang, S., Sengers, J.V., and Chen, Z.Y. (1991) Nonasymptotic critical thermodynamical behavior of fluids, Physica A 179, 344–377.CrossRefGoogle Scholar
  19. 19.
    Zinn, S.-Y. and Fisher, M.E. (1996) Universal surface-tension and critical-isotherm amplitude ratio in three dimensions, Physica A 226, 168–180.CrossRefGoogle Scholar
  20. 20.
    Anisimov, M.A., Povodyrev, A.A., Kulikov, V.D., and Seegers, J.V. (1995) Nature of crossover between Ising-like and mean-field critical behavior in fluids and fluid mixtures, Phys. Rev. Lett. 75, 3146–3149.CrossRefGoogle Scholar
  21. 21.
    Belyakov, M.Yu. and Kiselev, S.B. (1992) Crossover behavior of the susceptibility and the specific heat near a 2nd-order phase transition, Physica A 190, 75–94.CrossRefGoogle Scholar
  22. 22.
    Belyakov, M.Yu., Kiselev, S.B., and Muratov, A. R. (1993) Thermodynamic properties over a wide vicinity of the critical point, Sov. Phys. JETP 77, 279–285.Google Scholar
  23. 23.
    Bagnuls, C. and Bervillier, C. (1985) Nonasymptotic critical behavior from field theory at d = 3: the disordered phase case, Phys. Rev. B 32, 7209–7231.CrossRefGoogle Scholar
  24. 24.
    Melnichenko, Y.B., Anisimov, M.A., Povodyrev, A.A., Wignall, G.D., Sengers, J.V., and Van Hook, W.A. (1997) Sharp crossover of the susceptibility in polymer solutions near the critical demixing point, Phys. Rev. Lett. 79, 5266–5269.CrossRefGoogle Scholar
  25. 25.
    Anisimov, M.A., Luijten, E., Agayan, V.A., Sengers, J.V., and Binder, K., Shape of crossover between mean-field and asymptotic critical behavior in a threedimensional Ising lattice, preprint condmat/9810252, to be published.Google Scholar
  26. 26.
    Edison, T.A. (1998) Thermophysical properties of fluids and fluid mixtures: Including critical fluctuations effects, Ph. D. Thesis, University of Maryland, College Park, MD; Edison, T.A. and Sengers, J.V., to be published.Google Scholar
  27. 27.
    Povodyrev, A.A., Anisimov, M.A., Sengers, J.V., and Levelt Sengers, J.M.H. (1997) Vapor-liquid equilibria, scaling, and crossover in aqueous solutions of sodium chloride near the critial line, Physica A 244, 298–328.CrossRefGoogle Scholar
  28. 28.
    Jacob, J., Kumar, A., Anisimov, M.A., Povodyrev, A.A., and Sengers, J.V. (1998) Crossover from Ising to mean-field critical behavior in an aqueous electrolyte solution, Phys. Rev. E 58, 2188–2200.CrossRefGoogle Scholar
  29. 29.
    Luijten, E., Blöte, H.W.J., and Binder, K. (1996) Medium-range interactions and crossover to classical critical behavior, Phys. Rev. E 54, 4626–4636.CrossRefGoogle Scholar
  30. 30.
    Luijten, E., Blöte, H.W.J., and Binder, K. (1997) Nonmonotonic crossover of the effective susceptibility exponent, Phys. Rev. Lett. 79, 561–564.CrossRefGoogle Scholar
  31. 31.
    Luijten, E. and Binder, K. (1998) Nature of crossover from classical to Ising-like critical behavior, Phys. Rev. E 58, R4060–R4063.CrossRefGoogle Scholar
  32. 32.
    Luijten, E. and Blöte, H.W.J. (1995) Monte-Carlo method for spin models with long-range interactions, Int. J. Mod. Phys. C 6, 359–370.CrossRefGoogle Scholar
  33. 33.
    Davidovich, L.A. and Shinder, I.I. (1989) An investigation of the properties of solutions in the region where the upper and lower stratification points merge, Sov. Phys. JETP 68, 743–750.Google Scholar
  34. 34.
    Dietler, G. and Cannell, D.S. (1988) Observation of 3d-Ising exponents in miceilar solutions, Phys. Rev. Lett. 60, 1852–1855.CrossRefGoogle Scholar
  35. 35.
    Hamano, K., Kuwahara, N., Mitsushima, I., Kubota, K., and Kamura, T. (1991) Universal exponents for a nonionic miceilar solution of tetraethylene glycol decylether in water, J. Chem. Phys. 94, 2172–2175.CrossRefGoogle Scholar
  36. 36.
    Weingärtner, H., Kleemeier, M., Wiegand, S., and Schröer, W. (1995) Coulombic and non-Coulombic contributions to the criticality of ionic fluids — an experimental approach, J. Stat. Phys. 78, 169–196.CrossRefGoogle Scholar
  37. 37.
    Narayanan, T. and Pitzer, K.S. (1994) Mean-field to Ising crossover in ionic fluids, Phys. Rev. Lett. 73, 3002–3005.CrossRefGoogle Scholar
  38. 38.
    Narayanan, T. and Pitzer, K.S. (1994) On the decreasing exponent near a critical double point, J. Chem. Phys. 98, 9170–9174.CrossRefGoogle Scholar
  39. 39.
    Narayanan, T. and Pitzer, K.S. (1995) Critical phenomena in ionic fluids — a systematic investigation of the crossover-behavior, J. Chem. Phys. 102, 8118–8131.CrossRefGoogle Scholar
  40. 40.
    Wiegand, S., Levelt Sengers, J.M.H., Zhang, K.J., Briggs, M.E., and Gammon, R.W. (1997) Discrepancies in turbidity measurements in the ionic binary mixture triethyl n-hexyl ammonium triethyl n-hexyl boride in diphenyl ether, J. Chem. Phys. 106, 2777–2781.CrossRefGoogle Scholar
  41. 41.
    Wiegand, S., Briggs, M.E., Levelt Sengers, J.M.H., Kleemeier, M., and Schröer, W. (1998) Critical viscosity of the ionic mixture triethyl n-hexyl ammonium triethyl n-hexyl borate in diphenyl ether, J. Chem. Phys. 109, 9038–9051.CrossRefGoogle Scholar
  42. 42.
    Meier, G., Momper, B., and Fischer, E.W. (1992) Critical-behavior in a binary polymer blend as studied by static and dynamic light-scattering, J. Chem. Phys. 97, 5884–5897.CrossRefGoogle Scholar
  43. 43.
    Meier, G., Schwahn, D., Mortensen, K., and Janssen, S. (1993) On the crossover from Ising to mean-field behavior in compatible binary-polymer blends, Europhys. Lett. 22, 577–583.CrossRefGoogle Scholar
  44. 44.
    Schwahn, D., Mortensen, K., and Madeira, H. Y. (1987) Mean-field and Ising critical behavior of a polymer blend, Phys. Rev. Lett. 58, 1544–1546.CrossRefGoogle Scholar
  45. 45.
    Janssen, S., Schwahn, D., and Springer, T. (1992) Mean-field Ising crossover and the critical exponent-gamma, exponent-nu, and exponent-eta for a polymer blend - d-pb/ps studied by smaE-angle neutron-scattering, Phys. Rev. Lett. 68, 3180–3183.CrossRefGoogle Scholar
  46. 46.
    Bobbie, E.K., Reed, L., Huang, C.C., and Han, C.C. (1993) Asymptotic crossover in polymer blends, Phys. Rev. E 48, 1579–1582.CrossRefGoogle Scholar
  47. 47.
    Fisher, M.E. and Lee, B.P. (1996) Ginzburg criterion for Coulombic criticality, Phys. Rev. Lett. 77, 3561–3564.CrossRefGoogle Scholar
  48. 48.
    Fisher, M.E. (1994) The story of Coulombic criticality, J. Stat. Phys. 75, 1–36.CrossRefGoogle Scholar
  49. 49.
    Fisher, M.E. (1996) The nature of critically in ionic fluids, J. Phys. Cond. Matt. 8, 9103–9109.CrossRefGoogle Scholar
  50. 50.
    Chieux, P., Jal, J.-F., Hily, L., Dupuy, J., Leclercq, F., and Damay, P. (1991) Neutron-scattering mesoscopic and microscopic structure determination of binary-liquid mixtures undergoing nonmetal to metal transition (application to metalammonia and metal molten-salts), J. Physique IV C5 1, 3–23.Google Scholar
  51. 51.
    Chieux, P. (1991) Evidence for coarse structure (intermediate range order) in metalammonia solutions, J. Physique IV C5, 1, 373–375.Google Scholar
  52. 52.
    Seto, H., Schwahn, D., Nagao, M., Yokoi, E., Komura, S., Imai, M., and Mortensen, K. (1996) Crossover from mean field to three-dimensional Ising critical behavior in a three-component microemulsion system, Phys. Rev. E 54, 629–633.CrossRefGoogle Scholar
  53. 53.
    Anisimov, M.A., Povodyrev, A.A., and Sengers, J.V. (1999) Crossover critical phenomena in complex fluids, Fluid Phase Equilibria 158–160, 537–547.CrossRefGoogle Scholar
  54. 54.
    de Gennes, P.G. (1979) Scaling Concepts in Polymer Physics, Cornell University, Ithaca, New York.Google Scholar
  55. 55.
    Anisimov, M.A., Jacob, J., Kumar, A., Agayan, V.A., and Sengers, J.V., Change of criticality in a highly concentrated salt solution, to be published.Google Scholar
  56. 56.
    Nabutovskii, V.M., Nemov, N.A., and Peisakhovich, Yu.G. (1980) Order-parameter and charge-density waves near the critical point in an electrolyte, Sov. Phys. JETP 52, 1111–1116.Google Scholar
  57. 57.
    Nabutovskii, V.M., Nemov, N.A., and Peisakhovich, Yu.G. (1980) Charge-density and order-parameter waves in liquid and solid electrolytes in the vicinity of the critical point, Phys. Lett. A 79, 98–100.CrossRefGoogle Scholar
  58. 58.
    Nabutovskii, V.M., Nemov, N.A., and Peisakhovich, Yu.G. (1985) Correlation function for the electrolyte near the critical point of pure solvent, Mol. Phys. 54, 979–987.CrossRefGoogle Scholar
  59. 59.
    Stell, G. (1995) Criticality and phase-transitions in ionic fluids, J. Stat. Phys. 78, 197–238.CrossRefGoogle Scholar
  60. 60.
    Sengers, J.V. (1994) Effects of critical fluctuations on the theonodynamic and transport properties of supercritical fluids, in E. Kiran and J. M. H. Levelt Sengers (eds.), Supercritical Fluids, Kluwer, Dordrecht, 231–271.Google Scholar
  61. 61.
    Albright, P.C., Sengers, J.V., Nicoll, J.F., and Ley-Koo, M. (1986) A crossover description for the thermodynamic properties of fluids in the critical region, Int. J. Thermophys. 7, 75–84.CrossRefGoogle Scholar
  62. 62.
    van Pelt, A., Jin, G.X., and Sengers, J.V. (1994) Critical scaling laws and a classical equation of state, Int. J. Thermophys. 15, 687–697.Google Scholar
  63. 63.
    Edison, T.A., Amsimov, M.A., and Sengers, J.V. (1998) Critical scaling laws and an excess Gibbs energy model, Fluid Phase Equilibria 150–151, 429–438.CrossRefGoogle Scholar
  64. 64.
    Kiselev, S.B. (1998) Cubic crossover equation of state, Fluid Phase Equilibria 147, 7–23.CrossRefGoogle Scholar
  65. 65.
    Kostrowicka Wyczalkowska, A. (1998) Crossover critical phenomena in fluids, Ph. D. Thesis, University of Maryland, College Park, MD.Google Scholar
  66. 66.
    Kostrowicka Wyczalkowska, A., Anisimov, M.A., and Sengers, J.V. (1999) Global crossover equation of state of a van der Waals fluid. Fluid Phase Equilibria 158–160, 523–535.CrossRefGoogle Scholar
  67. 67.
    Kostrowicka Wyczalkowska, A., Abdulkadirova, Kh., Anisimov, M.A., and Sengers, J.V., A crossover equation for the thermodynamic properties of H2O and D2O in the critical region, to be published.Google Scholar
  68. 68.
    Jin, G.X., Tang, S., and Sengers, J.V. (1993) Global thermodynamic behavior of fluid mixtures in the critical region, Phys. Rev. E 47, 388–402.CrossRefGoogle Scholar
  69. 69.
    Povodyrev, A.A., Jin, G.X., Kiselev, S.B., and Sengers, J.V. (1996) Crossover equation of state for the thermodynamic properties of mixtures of methane and ethane in the critical region, Int. J. Thermophys. 17, 909–944.CrossRefGoogle Scholar
  70. 70.
    Jin, G.X., Tang, S., and Sengers, J.V. (1992) Thermodynamic properties of methane in the critical region. Int. J. Thermophys. 13, 671–684.CrossRefGoogle Scholar
  71. 71.
    Tiesinga, B.W., Sakonidou, E.P., van den Berg, H.R., Luettmer-Strathmann, J., and Sengers, J.V. (1994) The thermal-conductivity of argon in the critical region, J. Chem. Phys. 101, 6944–6963.CrossRefGoogle Scholar
  72. 72.
    Kostrowicka Wyczalkowska, A. and Sengers, J.V. (1999) Thermodynamic properties of sulfurhexafluoride in the critical region, J. Chem. Phys. 111, 1551–1560.CrossRefGoogle Scholar
  73. 73.
    Tang, S., Jin, G.X., and Sengers, J.V. (1991) Thermodynamic properties of 1,1,1,2-tetrafluoroethane (Rl34a) in the critical region, Int. J. Thermophys. 12, 515–540; (1995) 16, 1027–1028.CrossRefGoogle Scholar
  74. 74.
    van Pelt, A. and Sengers, J.V. (1995) Thermodynamic properties of 1,1-difluoroethane (R152a) in the critical region, Supercritical Fluids 8, 81–90.CrossRefGoogle Scholar
  75. 75.
    Edison, T.A. and Sengers, J.V. (1999) Thermodynamic properties of ammonia in the critical region, Int. J. Refrig. 22, 365–378.CrossRefGoogle Scholar
  76. 76.
    Kiselev, S.B. (1988) Universal crossover function for the free energy of singlecomponent and two-component fluids in the critical region, High Temp. 28, 42–47.Google Scholar
  77. 77.
    Kiselev, S.B., Kostyukova, I.G., and Povodyrev, A.A. (1991) Universal crossover behavior of fluid mixtures in the critical region, Int. J. Thermophys. 12, 877–895.CrossRefGoogle Scholar
  78. 78.
    Kiselev, S.B. and Sengers, J.V. (1993) An improved parametric crossover model for the thermodynamic properties of fluids in the critical region, Int. J. Thermophys. 14, 1–32.CrossRefGoogle Scholar
  79. 79.
    Kiselev, S.B. (1997) Prediction of the thermodynamic properties and the phase behavior of binary mixtures in the extended critical region, Fluid Phase Equilibria 128, 1–28.CrossRefGoogle Scholar
  80. 80.
    Griffiths, R.B. and Wheeler, J.C. (1970) Critical points in multicomponent systems, Phys. Rev. A 2, 1047–1064.CrossRefGoogle Scholar
  81. 81.
    Saam, W.F. (1970) Thermodynamics of binary systems near the liquid-gas critical point, Phys. Rev. A 2, 1461–1466.CrossRefGoogle Scholar
  82. 82.
    Anisimov, M.A., Voronel, A.V., and Gorodetskii, E.E. (1971) Isomorphism of critical phenomena, Sov. Phys. JETP 33, 605–612.Google Scholar
  83. 83.
    Leung, S.S. and Griffiths, R.B. (1973) Thermodynamic properties near the liquidvapor critical line in mixtures of 3 He and 4 He, Phys. Rev. A 8, 2670–2683.CrossRefGoogle Scholar
  84. 84.
    Moldover, M.R. and Gallagher, J.S. (1978) Critical points of mixtures: and analogy with pure fluids, AIChE J. 24, 267–278.CrossRefGoogle Scholar
  85. 85.
    Rainwater, J.C. (1991) Vapor-liquid equilibrium and the modified Leung-Griffiths model, in T. J. Bruno and J.F. Ely (eds.), Supercritical Fluid Technology, CRC Press, Boca Raton, FL, 57–162.Google Scholar
  86. 86.
    Belyakov, M.Yu., Kiselev, S.B., and Rainwater, J.C. (1997) Crossover Leung-Griffiths model and the phase behavior of dilute aqueous ionic solutions, J. Chem. Phys. 107, 3085–3097.CrossRefGoogle Scholar
  87. 87.
    Kiselev, S.B. and Rainwater, J.C. (1997) Extended law of corresponding states and thermodynamic properties of binary mixtures in and beyond the critical region, Fluid Phase Equilibria 141, 129–154.CrossRefGoogle Scholar
  88. 88.
    Kiselev, S.B. and Rainwater, J.C. (1998) Enthalpies, excess volumes, and specific heats of critical and supercritical binary mixtures, J. Chem, Phys. 109, 643–657.CrossRefGoogle Scholar
  89. 89.
    Kiselev, S.B., Rainwater, J.C., and Huber, M.L. (1998) Binary mixtures in and beyond the critical region: thermodynamic properties, Fluid Phase Equilibria 150–151, 469–478.CrossRefGoogle Scholar
  90. 90.
    Anisimov, M.A., Gorodetskii, E.E., Kulikov, V.D., and Sengers, J.V. (1995) Crossover between vapor-liquid and consolute critical phenomena, Phys. Rev. E 51, 1199–1215.CrossRefGoogle Scholar
  91. 91.
    Anisimov, M.A., Gorodetskii, E.E., Kulikov, V.D., and Sengers, J.V. (1995) A general isomorphism approach to thermodynamic and transport properties of binary fluid mixtures near critical points, Physica A 220, 277–324.CrossRefGoogle Scholar
  92. 92.
    Cheng, H., Anisimov, M.A., and Sengers, J.V. (1997) Prediction of thermodynamic and transport properties in the one-phase region of methane plus n-hexane mixtures near their critical end points, Fluid Phase Equilibria 128, 67–96.CrossRefGoogle Scholar
  93. 93.
    Anisimov, M.A., Agayan, V.A., Povodyrev, A.A., Sengers, J.V., and Gorodetskii, E.E. (1998) Two-exponential decay of dynamic light scattering in near-critical fluid mixtures, Phys. Rev. E 57, 1946–1961.CrossRefGoogle Scholar
  94. 94.
    Povodyrev, A.A., Anisimov, M.A., and Sengers, J.V. (1999) Crossover Flory model for phase separation in polymer solutions, Physica A 264, 345–369.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • M. A. Anisimov
    • 1
  • J. V. Sengers
    • 1
  1. 1.Department of Chemical Engineering and Institute for Physical Science and TechnologyUniversity of MarylandCollege ParkUSA

Personalised recommendations