Advertisement

Phase Equilibria in Near-Critical Solutions: Binary and Ternary Mixtures of Carbon Dioxide and Certain Solutes and the Occurrence of Two-Phase Holes

  • K. Gauter
  • C. J. Peters
Chapter
Part of the NATO Science Series book series (NSSE, volume 366)

Abstract

Ternary mixtures cante used as model systems for some important applications in super- and near-critical fluid technology, which increasingly find their way into laboratories and industry. In contrary to gasses, which, in general, have very poor solubility properties, near- and supercritical gases can be used as solvents for various substances, operating at moderate temperatures. At present, some distinct separation processes already make use of the advantages that supercritical fluid technology has to offer. Supercritical fluid extraction (SFE) is based on the fact that, near the critical point of the solvent, its properties, like the density, and with it, the ability for selectively dissolving non-volatile (e.g. organic) substances, change rapidly with only slight variations of pressure. This can form the basis for many powerful separation processes, but also makes efficient process control necessary, which is a challenge for engineers. In addition, the phase behavior of the mixture of substances involved has to te known very accurately. This often caused problems in the past, since phase behavior in the critical region was considered to te too complicated to control Today, research has provided much more insight into the phase behavior of mixtures in the critical region and former difficulties have partly become opportunities for the development of new, more efficient separation and production processes.

Keywords

Ternary System Phase Behavior Ternary Mixture Critical Line Helmholtz Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adrian, T. (1997), Doctoral Thesis, Universität Kaiserslautern, Kaiserslautem, GermanyGoogle Scholar
  2. 2.
    Wendland, M., Hasse, H., and Maurer, G., (1993) Multiphase high-pressure equilibria of carbon dioxidewater-isopfopanol, J. Supercrit. Fluids, 6, 211–222.CrossRefGoogle Scholar
  3. 3.
    Wendland, M., Hasse, H. and Maurer, G. (1994) Multiphase high-pressure equilibria of carbon dioxidewater-acetone, J. Supercrit. Fluids, 7, 245–250CrossRefGoogle Scholar
  4. 4.
    Patten, C.L., Kisler, S.H. and Luks, K.D. (1993) Multiphase equilibrium behavior of a mixture of carbon dioxide, 1-decanol and n-tetradecane, in: Supercritical Fluid Engineering Science, Fundamentals and Applications, E. Kiran and J.F. Brennecke (Eds.), ACS Symposium Series No. 514, pp. 55–65.Google Scholar
  5. 5.
    Scott, R.L. and Van Konynenburg P.H. (1970) Van der Waals and related models for hydrocaibon mixtures, Discuss. Faraday Soc., 49, 87–97CrossRefGoogle Scholar
  6. 6.
    Van Konynenburg, P.H. and Scott., R.L. (1980) Critical lines and phase equilibria in binary van der Waals mixtures, Phil. Trans, of the Royal Society (London), 298, 495–540.CrossRefGoogle Scholar
  7. 7.
    van der Waals, J.D. (1890) Molekularthcorie eines Körpers, der aus zwei verschiedenen Stoffen besteht, Z. pkys., Chem., 5, 133–173.Google Scholar
  8. 8.
    Schneider, G.M. (1966) Phasengleichgewichte in fluessigen Systemen bei holten Druecken. Zusammenfassender Bericht, Ber. Bunsenges. Phys. Chem., 70, 497–520.Google Scholar
  9. 9.
    Schneider, G.M. (1968) Phase equilibria in binary fluid systems of hydrocarbons with carbon dioxide, water and methane, Chem. Eng. Pmgr, Symp. Ser., 64, 945.Google Scholar
  10. 10.
    Fall, D.J. and Luks, K.D. (1985) Liquid-liquid-vapor phase equilibria of the binary system carbon dioxide + n-tridecane, J. Chem. Emg. Data, 30, 276–279.CrossRefGoogle Scholar
  11. 11.
    Hottovy, J.D., Kohn, J.P. and Luks, K.D. (1981) Three-phase tiquid-liquid-vapor equilibria behavior of certain binary CO2 — n-paraffin, J. Chem. Eng. Data, 26, 256–258.CrossRefGoogle Scholar
  12. 12.
    Miller, M.M. and Luks, K.D. (1989) Obsefvations on the multiphase equilibria behavior of CO2-rich and ethane-rich mixtures, Fluid Phase Equilibria, 44, 295–304.CrossRefGoogle Scholar
  13. 13.
    de Loos, Th.W., Foot, W. and de Swam Arons, J., CO2 and n-alkanes, J. Chem. Therm. submitted.Google Scholar
  14. 14.
    Stamoulis, D. (1994) Patterns of fluid phase behavior in binary and quasi-binary mixtures, Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands.Google Scholar
  15. 15.
    Lam, D.H., Jangkamolkulchai, A. and Luks, K.D. (1990) Liquid-liquid-vapor phase equilibrium behavior of certain binary ethane + n-alkanol mixtures, Fluid Phase Equilibria, 59, 263–277.CrossRefGoogle Scholar
  16. 16.
    Peters, C.J., van der Kooi, H.J., de Roo, J.L. and de Swaan Arons, J. (1989) The search for tricriticallity in binary mixtures of near-critical propane and normal paraffins, Fluid Phase Equilibria, 51, 339–351.Google Scholar
  17. 17.
    Peters, C J. (1994) Multiphase equilibria in near-critical solvents, in: E. Kran and J.M.H. Levelt Sengers (Eds.) (1994) Supercritical Fluids: Fundamentals for Application, Kluwer Academic Publishers, pp. 117–145.Google Scholar
  18. 18.
    de Loos, Th.W. and Poot, W. (1998) Liquid-Uquid-vapor equilibria in binary families of SF6, CClF3, C2H3F3, and C2H4 with n-alkanes, International J. of Thermodynamics, 19, 637–351.CrossRefGoogle Scholar
  19. 19.
    Raeissi, S., Gauter, K. and Peters, C.J. (1998) Fluid multiphase behavior in quasi-binary mixtures of carbon dioxide and certain 1-alkanols, FluM Phase Equilibria, 147, 239–249.CrossRefGoogle Scholar
  20. 20.
    Creek, J.X., Knobler, C.M. and Scott, R.L. (1981) Tricritical phenomœa in “quasibinary” mixtures of hydrocarbons: I. Methane ststems, J. Chem. Phys., 74, 3489–3499.CrossRefGoogle Scholar
  21. 21.
    Brunner, E. (1988) Fluid mixtures at high pressures VI. Phase separation and critical phenomena in 18 (n-alkane + ammonia) and 4 (n-alkane + metttanol) mixtures, J. Chem. Thermodynamics, 20, 273–297.CrossRefGoogle Scholar
  22. 22.
    Rowlinson, J.S. and Swinton, J.L. (1982) Liquids and liquid mixtures, Butterworth Scientific, 3rd ed.Google Scholar
  23. 23.
    van Pelt, A., Peters, C.J., de Swaan Arons, J. and Deiters, U.K. (1995) Global phase behavior based on the simplified-pertiffbed hard-chain equation of state, J. Chem. Phys. 102, 3361–3375.CrossRefGoogle Scholar
  24. 24.
    Rijkers, M.P.W.M., Petere, C.J. and de Swaan Arons, J., Limited miscibility of liquid hydrocaitwn mixtures. New results for propane solvent, Proceedings of world congress III of chemical engineering, Tokyo, Japan, pp. 180–183.Google Scholar
  25. 25.
    Peters, C.J., Mjkers, M.P.W.M., de Roo, J.L. and de Swaan Arons, J. (1989) Phase equilibria in binary mixtures of near-critical propane and poly-aromatic hydrocarbons, Fluid Phase Equilibria, 52, 373–387.CrossRefGoogle Scholar
  26. 26.
    Lam, D.H., Jangkamolkutchai, A., Luks, K.D. (1990) Liquid-liquid-vapor phase equilibrium behavior of certain binary aifrous oxide + n-alkanol mixtures, Fluid Phase Equilibria, 60, 119–130.CrossRefGoogle Scholar
  27. 27.
    Rowlmson, J.S. and Freeman, P.J. (1961) Lower critical solution points on hydrocarbon mixtures, Pure Appl. Chem., 2 329–334.CrossRefGoogle Scholar
  28. 28.
    Davenport, A.J. and Rowlmson J.S. (1963) The solubility of hydrocarbons in liquid methane, Trans. Faraday. Soc., 59 78–84.CrossRefGoogle Scholar
  29. 29.
    Dickinson, E., Knobler, C.M., and Scott R.L. (1973) Solid/liquid phase equilibria in the mixtures methane + n-hexane and methane + n-pentane, J Chem. Soc. Faraday Trans. I, 69, 2179–2187.CrossRefGoogle Scholar
  30. 30.
    Scheidgen, A.L. (1997) Fluidphasengleichgewichte binärer und tenärer Kohlendioxid-mischungen mit schwerflöchtigen oigmiisdien Substanzen bis 100 MPa - Cosolvency effect, Mscibility windows und Löcher in der kritischen Fläche, Ph.D. Thesis, Ruhr-Universität Bochum, Bochum, Germany, p. 104.Google Scholar
  31. 31.
    Deiters, U.K. and Pegg, I.L. (1989) Systematic mvestigation if the phase behavior in binaiy fluid mixtures. I. Calculations based on the Redlich-Kwong equation of state, J. Chem. Phys., 90, 6632–6641.CrossRefGoogle Scholar
  32. 32.
    Reid, R.C., Ptausnitz, J.M. and Poling, B.E. (1988) The properties of gases & liquids, McGraw-Hill Book Company, 4th ed.Google Scholar
  33. 33.
    Walker, J.S.; and Vause, C.A. (1987), Reappearing phases, Scientific American, 256, 90–97.Google Scholar
  34. 34.
    Deiters, U. and Schneider, G.M. (1976) Fluid mixtures at high pressures. Compute calculations of the phase behavior and the critical phenomena in fluid binary mixtures from the Redtich-Kwong equation of stete, Berichte der Bunsen-Gesellschoft, 80, 1316–1321.CrossRefGoogle Scholar
  35. 35.
    Kraska, T. and Deiters, U. 1992 ) Systematic investigation of the phase behavior in binary fluid mixtures. H. Calculations based on the Carnahan-Staiting-Redich-Kwong equation of stete; J. Chem. Phys., 96, 539–547.CrossRefGoogle Scholar
  36. 36.
    Petere, C.J., Florusse, L.J., Hähre, S. and de Swaan Arons, J. (1995) Fluid multiphase equilibria and critical phenomena in binary and ternary mixtures of cafbon dioxide, certain n-aManoIs and tetradecane, Fluid Phase Equilibria, 110, 157473.Google Scholar
  37. 37.
    Peters, C.J., Florusse, L.J. and Häbit, S. (1996) Measurements on fluid multiphase equilibria in ternary mixtures of carbon dioxide, tetradecane and certain n-atkanols, The Journal of Supercritical Fluids, 9, 135–140.CrossRefGoogle Scholar
  38. 38.
    Gauter, K., Flomsse, L. J., Smite, J.C., Peters, C.J. and de Swaan Aarons, J., Fluid multiphase behavior of various ternary systems carbon dioxide + 1-alkanol + w-tridecane, J. Chem. Therm., 30, 1617–1631.Google Scholar
  39. 39.
    Gauter, K., Florusse, L.J. and Peters, C.J. (1998), Experimentai results on the fluid multiphase behavior of various ternary systems of near-critical carbon dioxide, certain 1-alkanols and o-nitrophenol, Fluid Phase Equilibria, 150–151, 501–514.CrossRefGoogle Scholar
  40. 40.
    Ganter, K., Florasse, L.J., Peters, C.J. and de Swaan Aarons, J. (1996) Classification of and transformations between types of fluid phase behavior in selected ternary systems, Fluid Phase Equilibria, 116, 445–453.CrossRefGoogle Scholar
  41. 41.
    Lam, D.H., Jangkamolkulchai, A. and Luks, K.D (1990) Liquid-Iiquid-vapor ptese equilibrium behavior of certain binary carbon dioxide + n-alkanol mixtures, Fluid Phase Equilibria, 60, 131–141.CrossRefGoogle Scholar
  42. 42.
    Gurdial, G.S., Foster, N.R., Jimmy Yun, S.L. and Tilly, K.D. (1993) Phase behavior of supercritical fluid-entrainer systems, in Supercritical FluM Engineering Science, Fundamentals and Applications, E. Kiran and J.F. Brcanecke (Eds.), ACS Symposium Series No. 514, pp. 34–45.Google Scholar
  43. 43.
    Mller, M.M. and Luks, K.D. (1989) Observations on the multiphase equilibria behavior of CO2Vrich and ethane-rich mixtures, Fluid Phase Equilibria, 44, 295–304.CrossRefGoogle Scholar
  44. 44.
    Gauter, K., (1999) Fluid multiphase behavior in ternary systems of near-critical CO2: Measurements, Modeling and Computation, Ph. D, thesis, Delft University of Technology, Delft, The Netherlands.Google Scholar
  45. 45.
    Creek, J.L., Knobler, C.M and Scott, R.L. (1981) Tricritical phenomena in “quasibinary” mixtures of hydrocarbons: I. Methane systems, J. Chem. Phys., 74, 3489–3499.CrossRefGoogle Scholar
  46. 46.
    Goh, M.C., Specovius, J., Scott, R.L. and Knobler, C.M., (1987) Tricritical phenomena in quasi-binary mixtures. IV. Ternary ethane systems, J. Chem. Phys., 86, 4120–4132.CrossRefGoogle Scholar
  47. 47.
    Peters, C.J., Gauter, K. (1999) Occurrence of holes in temaiy fluid multiphase systems of near-critical carbon dioxide and certain solutes, Chemical Reviews, 99, 419–431.CrossRefGoogle Scholar
  48. 48.
    Gauter, K., Peters, C.J., Scheldgeo, A.L., Schneider, G.M. Cosolvency effects, miscibility windows and two-phase holes 1g in three-phase surfaces log in ternary systems: A status report, Fluid Phase Equilibria, accepted for publication.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • K. Gauter
    • 1
  • C. J. Peters
    • 1
  1. 1.Department of Chemical TechnologyDelft University of Technology Faculty of Applied SciencesDelftThe Netherlands

Personalised recommendations