Design Procedures and Scale-Up for Separation Processes with Supercritical Fluids

  • G. Brunner
Part of the NATO Science Series book series (NSSE, volume 366)


Separation processes with supercritical gases, Supercritical Fluid Extraction (SFE) or Gas Extraction (GE) processes, is a group of separation processes which applies supercritical fluids as separating agents in the same way as for instance, liquid solvents are used in separation processes like liquid-liquid extraction or absorption. For gas extraction, the solvent is a supercritical component or a supercritical mixture of components [1].


Separation Process Supercritical Fluid Supercritical Carbon Dioxide Supercritical Fluid Extraction Enantiomeric Excess 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brunner, G. (1994) Gas Extraction. An introduction to fundamentals of supercritical fluids and the application to separation processes. Steinkopff, Darmstadt; Springer, New York; ISBN 0-387-91477-3.Google Scholar
  2. 2.
    Bmnner. G. (1987) Decaffeination of raw coffee by means of compressed nitrous oxide, Proc. International Symposium on Supercritical Fluids, Vol. 2, P. 691–698; Nice. October 1988.Google Scholar
  3. 3.
    Reese, D. (1992) Erstellung eines Programmsystems zur Modellierung von Festbetfextraktionen und zur Schätzung der Modellparameter. Diploma thesis, Diplomarbeit, TU Hamburg-Harburg, Hamburg.Google Scholar
  4. 4.
    Brunner. G., Zwiefelhofer, U., Simon, A. (1992) Extraction of Xanthines From Plant Materials With Carbon Dioxide. Solvent extraction 1990. Proc. of the international solvent extraction conference (ISEC ′90), T. Sekine (ed.). Part B. 1661–1670. Elsevier, Amsterdam.Google Scholar
  5. 5.
    Nowak, K., Brunner, G. (1994) Decontamination of soil and oxidation of the extracts by/in supercritical water: Modeling of the extraction and extraction results. Proceedings 3rd International Symposium on Supercritical Fluids. Perrut M., G. Bmnner (eds.), Strasbourg, ISBN 2-905267-23-8, Vol. 2, 223–228.Google Scholar
  6. 6.
    Finis. A.,. Bmnner, G. (1996) Continuous Extraction of Conataminated Soil with Supercritical Water. High Pressure Chemical Engineering, Ph. von Rohr, Chr. Trepp, eds., Elsevier, Amsterdam, 179–184.Google Scholar
  7. 7.
    Saure, C., Brunner, G. (1994) Laboratory plant for countercurrent extractions and some experiments for separation of tocochromanols. Proceedings 3rd International Symposium on Supercritical Fluids. Perrut, M. Bronner.G. (eds.). Strasbourg. ISBN 2-905267-23-8, Vol. 2. 211–216.Google Scholar
  8. 8.
    Brunner. G. (1998) Industrial Process Development: Countercurrent Multistage Gas Extraction Processes. Proc. 4th Int. Conference on Supercritical Fluids, Sendai. Japan, May 1997. Journal of Supercritical Fluids 13, 283–301.CrossRefGoogle Scholar
  9. 9.
    van Gaver. D. (1992) Fractionatie van vetzuuresters met supercritische extractie. Diss. Universiteit Gent.Google Scholar
  10. 10.
    Riha. V. (1996) Gegenstromtrennung von Fettsäyreethylestern mit überkritischem CO2, Dissertation, Technische Universität Hamburg-Harburg, Hamburg.Google Scholar
  11. 11.
    Ikawa. N., Nagase,Y. Tada, T., Furuta, S., Fukuzato, R. (1993) Separation Process of Ethanol from Aqyeous Solutions Using Supercritical Carbon Dioxide. Fluid Phase Equilibria, 83, 167–174.CrossRefGoogle Scholar
  12. 12.
    Sato. M.: Goto. M.: Hirose, T. (1996) Supercritical fluid extraction for the removal of terpenes from citrus oils, Proc. of the International Solvent Extraction Conference. Melbourne, Australia, vol. 2. 987.Google Scholar
  13. 13.
    Meyer, J.-T. Brunner. G. (1994) Apparatus for determination of hydrodyoamic behavior in countercurrent columns and some experimental results. Proceedings 3rd International Symposium on Supercritical Fluids. Perrut M., Brunner, G. (eds.), Strasbourg, ISBN 2-905267-23-8. Vol. 2, 217–222.Google Scholar
  14. 14.
    Budich. M. Heilig. S. Wesse, Th., Leibküchlehler, V., Branner. G. (1999) Countercurrent Deterpenation of Citrus Oils with Supercritical CO2. Journal of Supercritical Fluids 14, 105–114.CrossRefGoogle Scholar
  15. 15.
    van Deemter, J.J., Zuiderweg, F.J., Klinkenberg, A. (1965) Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Client Eng Sci. 5, 271–289.Google Scholar
  16. 16.
    Gere, D. Board, R., Mc Manigill, D. (1982) Parameters of supercritical fluid chromatography using HPLC columns. Hewlett-Packard Publ 43-5953-1647, Avoodale. Pennsylvania. 7–15.Google Scholar
  17. 17.
    Reichmann F. (1998) Trennung der C-22 Fischölethylester DPA/DHA und die Untersuchung der Maßstabsvergrößerung. Technical report. Technische Universität Hamburg-Harburg, Hamburg.Google Scholar
  18. 18.
    Depta. A. (1998) Technical report, Technische Universität Hamburg-Harburg. Hamburg.Google Scholar
  19. 19.
    Kasche. V., Schlothauer. R., Brunner, G. (1988) Enzyme Denaturation in Supercritical CO: Stabilizing Effect of r-s-Bond During the Depressurization Step. Biotechnology Letters, 10, No 8, 569–574.CrossRefGoogle Scholar
  20. 20.
    Gufhmann, O., Schwerdtfeger, R., Rieks, A., Antranikian G., Kasche. V., Brunner, G. (1996) Enzyme Catalyzed Reactions, Enantioselectivity and Stability under High Hydrostatic Pressure. High Pressure Chemical Engineering. Ph. von Rohr, Chr. Trepp, eds., Elsevier. Amsterdam. 127–132.Google Scholar
  21. 21.
    Chen, C.-S., Sih, C. J. (1989) Enantioselective biocatalysis in organic solvents with lipases. Angew. Ch. 101, 711–724.CrossRefGoogle Scholar
  22. 22.
    Birtigh, A. (1995) Regeneration der Fluidphase bei der Gasextraktion. Diss. TU-Hamburg-Harburg.Google Scholar
  23. 23.
    Birtigh, A., Brunner, G. (1996) Regeneration of Loaded Supercritical Fluids. J. I. of Supercritical Fluids, 9, 227–233.CrossRefGoogle Scholar
  24. 24.
    Birtigh, A., Liu K. Johannsen, M., Brynner, G. (1995) Regeneration Methods for Caffeine-Loaded CO2, Separation Science and Technology, 30, (17), 3265–3286.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • G. Brunner
    • 1
  1. 1.Thermische Verfahrenstechnik TechnischeUniversität Hamburg-HarburgHamburgGermany

Personalised recommendations