Skip to main content

Modeling of Natural Materials Extraction

  • Chapter
Supercritical Fluids

Part of the book series: NATO Science Series ((NSSE,volume 366))

Abstract

Mathematical modeling of the extraction of natural materials is an activity of increasing importance due to the economic potentials it offers. A fundamentally sound and sufficiently detailed mathematical model may be used to project and extend the scope of the available experimental findings to obtain a better understanding of the systems and the phenomena involved for the design, scale-up and operation of the related equipment, and the complex systems having such equipment. Almost all mathematical models describing operations involving complex phenomenon have several simplifying assumptions attached to a basic physical model, assumed to best describe the actual phenomena. What is required of the model is to predict the available experimental data accurately and precisely. It is the best if non of the model parameters are system dependent, that is they are all calculated from theoretical principles, or are evaluated from data obtained from completely independent experimental systems. The strength of the models are measured by the number of system types they can accurately predict, and the spans of their ranges of applicability, within acceptable limits of accuracy and precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brunner, G. (1984) Mass transfer from solid material in gas extraction, Berichte Bunsenges. Phys. Chem. 88, 887–891.

    CAS  Google Scholar 

  2. Brunner, G. (1994) Gas Extraction, Steinkopff Darmstadt Springer New York

    Google Scholar 

  3. Reverchon, E. (1997) Supercritical fluid extraction of essential oils and related products, J. Supercritical Fluids 10, 1–37.

    Article  CAS  Google Scholar 

  4. Koll, P. and Metzger, J.O. (1978) Thermal degradation of cellulose and chitin in supercritical acetone, Angew. Chem. Int. Ed. Engl. 17, 754–755.

    Article  Google Scholar 

  5. Çahmh, A. and Okay, A. (1982) Supercritical dioxane extraction and dioxane-lignin and comparison of the extracts with the pyrolysis products, Sep. Sci. Technol., 17, 183–197.

    Article  Google Scholar 

  6. Koll, P., Bronstrup, P. and Metzger, J. O. (1983) Liquefaction of biomass with supercritical fluids in high pressure/high temperature flow reactor; in Chemical Engineering ai Supercritical Conditions; Paulaitis, M.E., Penninger, J.M.L., Gray, R.D. Jr. and Davidson, P., Ed.; Ann Arbor Science: Ann Arbor, MI.

    Google Scholar 

  7. Li, L. and Kiran, E. (1989) Kinetic model for supercritical delignifaction of wood; in Supercritical Fluid Science and Technology, Johnston, K.P. and Penninger, J.M.L., Eds., ACS Symposium Series 406, 317–331.

    Google Scholar 

  8. Goto, M., Smith, J.M. and McCoy, B.J. (1990) Kinetics and mass transfer for supercritical fluid extraction of wood, Ind. & Eng. Chem. Res. 29, 282–289.

    Article  CAS  Google Scholar 

  9. Goto, M., Hortaçsu, Ö. and McCoy, B.J. (1990) Supercritical thermal decomposition of cellulose: Experiment and modeling’, Ind. & Eng. Chem. Res. 29 1091–1095.

    Article  CAS  Google Scholar 

  10. Kandiah, M. and Spiro, M. (1990) Extraction of ginger rhizome: Kinetic studies with supercritical carbon dioxide’, Int. J. Food Sci. Tech. 25, 328–332.

    Article  CAS  Google Scholar 

  11. Nguyen, K., Barton, P. and Spencer, J.S. (1991) Supercritical carbon dioxide extraction of vanilla, J. Supercritical Fluids 4, 40–45.

    Article  Google Scholar 

  12. Goto, M., Roy, B.C., Kodama, A. and Hirose, T. (1998) Modeling supercritical fluid extraction process involving solute-solid interaction, J. Chem. Eng. Japan, 31, 171–177.

    Article  CAS  Google Scholar 

  13. Akgerman, A. and Madras, G. (1994) Fundamentals of solids extraction by supercritical fluids; in Supercritical Fluids: Fundamentals and Application; Kiran, E. and Levelt Seligere, J.M.H., Eds., NATO-ASi Series, Series E: Applied Sciences, 273, 669–695.

    Google Scholar 

  14. Erkey, C and Akgerman, A., (1990)Chromatograpy theory: Application to supercritical fluid extraction, AIChE J., 36, 1163–1170.

    Google Scholar 

  15. King, M.B. and O.J. Calchpole (1993) Physicochemical Data Required for the Design of Near-Critical Fluid Extraction Process in Extraction of Natural Products Using Near-Critical Solvents, M.B. King and Bolt, T.R., Eds., Blackie, Glasgow.

    Chapter  Google Scholar 

  16. Roy, B.C., Goto, M. and Hirose, T., (1996) Extraction of ginger oil with supercritical carbon dioxide, Ind. & Eng. Chem. Res. 35, 607–612.

    Article  CAS  Google Scholar 

  17. Goto, M., Roy, B.C. and Hirose, T. (I996) Shrinking-corc leaching model for supercritical fluid extraction, Journal of Supercritical Fluids 9, 128–133.

    Google Scholar 

  18. Goto, M., Roy, B.C., Nomura, Y. and Hirose, T. (1994) Kinetic studies of supercritical fluid extraction from natural solid materials; in Proceedings 3rd International Symposium on Supercritical Fluids, Perrut, M and Bramer, G., Eds., 2, 165–171.

    Google Scholar 

  19. Roy, B.C., Goto, M. and Hirose, T. (1996) Extraction of ginger oil with supercritical carbon dioxide: Experiments and modeling, Ind. & Eng. Chem. Res. 35, 607–612.

    Article  CAS  Google Scholar 

  20. Bartie, K. D., Clifford, A.A., Hawthorne, S.B., Langenfeld, J.J., Miller, D.J. and Robinson, R.A. (1990) A model for dynamic extraction using a supercritical fluid, Journal of Supercritical Fluids 3, 143–147.

    Article  Google Scholar 

  21. Crank, J. (1954) The Mathematics of Diffusion, Clarendon Press, Oxford.

    Google Scholar 

  22. Carslaw, H.S. and Jaeger, J.C. (1956) Conduction of Heat in Solids; sec. ed., Clarendon Press, Oxford.

    Google Scholar 

  23. Reverchon, E., Sesti Osseo, L. and Gorgoglione, D. (1994)Supereritical CO2 extraction of basil oil: Characterization of products and process modeling’, J. Supercritical Fluids, 7, 185–190.

    Google Scholar 

  24. Reverchon, E., Gorgoglione, D. and Sesti Osseo, L. (1993) Modeling of supercritical fluid extraction from herbaceous matrices’, Ind. & Eng. Chem. Res. 32, 2721–2726.

    Article  CAS  Google Scholar 

  25. Reverchon, E. (1996) Mathematical modeling of supercritical extraction of sage oil, AIChE J. 42, 1765–1771.

    Article  CAS  Google Scholar 

  26. Villemiaux, J. (1987) Chemical engineering approach to dynamic modeling of linear chromatography, J. Chromatograph, 406, 11–26.

    Article  Google Scholar 

  27. Reverchon, E. and Sesti Osseo, L. (1994) Modelling the supercritical extraction of basil oil, in: Proceedings of the Third International Symposium on Supercritical Fluids, Pernit. M and Brunner, G. eds., 2, 189–195.

    Google Scholar 

  28. Reverchon, E., Delia Porta, G. and Taddeo, R. (1995) Extraction of sage essential oil by supercritical CO2: Influence of some process parameters’, J. Supercritical Fluids 8, 302–309.

    Article  CAS  Google Scholar 

  29. Sovova, H., Komers, R., Kucera, J. and Jez, J. (1994) Supercritical carbon dioxide extraction of carraway essential oil, Chem. Eng. Sci. 49, 2499–2505.

    Article  CAS  Google Scholar 

  30. Sovova, H., (1994) Rate of the vegetable oil extraction with supercritical CO2 - modelling of extraction curves, Chem. Eng. Sci. 49 409–414.

    Article  CAS  Google Scholar 

  31. Sovova, H., Kucera, J. and Jez, J (1994) Rate of the vegetable oil extraction with supercritical CO2 -extraction of grape oil, Chem. Eng. Sci. 49, 415–420.

    Article  CAS  Google Scholar 

  32. Coelho, L.A.F., Stuart, G.R., de Oüveria J.V. and D’Avila, S.G. (1995) Extraction of Brazilian basil oil using carbon dioxide at high pressures: Experimental data and process modeling, in: Proceedings of the Third Congresso sui Fluidi Supercrtici e loro Applicazioni, I. Kikic and P. Alessi (Eds), 115–119.

    Google Scholar 

  33. Mira, B., Blasco, M, Berna, A. and Subirats, S. (1995) Supercritical CO2 extraction of essential oils from orange peel’, in: Proceedings of the Third Congresso sui Fluidi Supercrtici e loro Applicazioni, I. Kikic and P. Alessi (Eds), 157–460.

    Google Scholar 

  34. Goto, M., Sato, M. and Hirose, T., (1993) Extraction of peppermint oil by supercritical carbon dioxide’, J. Chem. Eng. Japan 26, 401–407.

    Article  CAS  Google Scholar 

  35. Roy, B.C.; Goto, ML, Hirose, T., Navaro, O. and Hortacsu, O., (1996) Extraction rates of oil from tomato seeds with supercritical carbon dioxide, J. Chem. Eng. Japan 27, 768–772.

    Article  Google Scholar 

  36. Goto, M., Smith, J.M. and McCoy, B.J. (1990) Parabolic profile approximation for chemical reactions, Chem. Eng. Sei. 45, 443–448.

    Article  CAS  Google Scholar 

  37. Pennt, M., Clavier, J.Y., Poletto, M. and Reverchon, E., (1997) Mathematical modeling of sunflower seed extraction by supercritical CO2, Ind. & Eng. Chem. Res. 36, 430–435.

    Article  Google Scholar 

  38. Kiran, E. (1995) Supercritical fluid processing in the pulp and paper and the forest products industries, in: Innovations in Supercrotocal Fluids Science and Technology, Hutchenson, K.W. and Foster, N.R. (eds); ACS Symp. Ser. 608, 380–401.

    Google Scholar 

  39. Hortaçsu, Ö., Aeskenazi, O. and Akman, U. (1995) Release mechanisms of extractable compounds from plant matrices during supercritical fluid extraction-Mathematical modeling; in: Innovations in Supercritical Fluids Science and Technology, Hutchenson, K.W. and foster, N.R. (eds); ACS Symp. Series 608, 364–378.

    Google Scholar 

  40. Serpil, T. (1997) Modeling and Simulation of Supercritical Fluid Extraction of Natural Materials from Plants’, M.S. Thesis, Bogaziçi University, Bebek, Istanbul, Turkey.

    Google Scholar 

  41. Serpil, T., Aeskeeazi, O.N., Akinan, U. and Hortaçsu, Ö., (1997) Application of serially-interconnected perfectly mixed tanks model to dense-gas extraction of plants, Proc. 4ih Int. Symp. Supercritical Fluids, 299–302.

    Google Scholar 

  42. Özer, E.Ö., Platin, S., Akman, U. and Hortaçsu, Ö., (1996) Supercritical carbon dioxide extraction of spearmint oil from mint-plant leaves, Can. J. Chem. Engs. 74, 920–928.

    Article  Google Scholar 

  43. Naik, S.N., Lentz, H. and Maheshawari, R.C. (1989) Extraction of perfumes and flavors from plant materials with liquid carbon dioxide under liquid-vapor equilibrium conditions, Fluid Phase Equilibria, 49, 115–120.

    Article  CAS  Google Scholar 

  44. Tart, C.S. and Liang, S. K., (1989) Axial dispersion of supercritical CO2 in packed beds, Ind. Eng. Chem. Res. 28, 1246–1250.

    Article  Google Scholar 

  45. Wakao, N. and Kaguei, S., (1982) Heat and mass transfer in packed beds, Gordon and Breach Sci. Pub., 138–160.

    Google Scholar 

  46. Kerst, A.W. and Schlünder, E-U, (1998) Fluid dynamics and liquid side mass transfer at high pressures; in: Proc. 5th Meeting on Supercritical Fluids: Materials and Natural Product Processing, Pennt, M and Supra, P., (eds.) 457–462.

    Google Scholar 

  47. Recasens, F., McCoy, B.J. and Smith, J.M., (1989) Desorption processes: Supercritical fluid regeneration of activated carbon, AIChE J. 35, 951–958.

    Article  CAS  Google Scholar 

  48. Wankat, P.C., Hesketh, R.P. Schulz, K.H. and Slater, C.S. (1994) Separations: What to teach undergraduates, Chemical Engineering Education, 28, 12–16.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hortaçsu, Ö. (2000). Modeling of Natural Materials Extraction. In: Kiran, E., Debenedetti, P.G., Peters, C.J. (eds) Supercritical Fluids. NATO Science Series, vol 366. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3929-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3929-8_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6236-4

  • Online ISBN: 978-94-011-3929-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics