Kinetic Studies of Methanol Oxidation in Supercritical Water and Carbon Dioxide

  • A. Kruse
  • H. Ederer
  • C. Mas
  • H. Schmieder
Part of the NATO Science Series book series (NSSE, volume 366)


As is shown by working groups all over the world, supercritical water oxidation is a promising technology for the complete oxidation of aqueous hazardous waste from different sources, such as aqueous waste from the pharmaceutical and chemical industries [1, 2]. The function of the reaction medium supercritical water during oxidation, howver, is not well understood.


Methanol Oxidation Elementary Reaction Supercritical Carbon Dioxide Supercritical Water Methanol Conversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schnmeder, H., Din-jus, E., Goldacker, H. and Kruse, A. (1997) Experiences with superoitlcal oxidation for hazardous waste treatment, Proceedings of the 4th Italian Conference on Supercritical Fluids and their Applications ( Capri, Italy )Google Scholar
  2. 2.
    Savage, P.E., Gopatan, S., Mizan, T.I., Martino, C.J. and Brock, E.E. (1995) Reactions at supercritical conditions: applications and fundamentals, AIChE Journal 41, 1723–1778CrossRefGoogle Scholar
  3. 3.
    Luetge, C., Reiss, I., Schleussinger, A. and Schultz, S. (1994) Modeling the extraction of perylene from spiked soil material by Anse carton dioxide, J. Supercrit. Fluids 7, 265–274CrossRefGoogle Scholar
  4. 4.
    Bleyl, H.-J., Abeln, J., Boukis, N., Goldacker, H., Kluth, M., Krase, A., Petrich, G., Schmieder, H. and Wiegand G. (1995) Hazardous waste disposal by supercritical fluids, Proceedings of the Ninth Symposium on Separation Science und Technology for Energy Application, (Gatlinburg, Tennessee, USA )Google Scholar
  5. 5.
    Kruse, A. and Schmieder, H. (1998) Supercritical oxidation in water and carbon dioxide, Environmental Progress 17, 252–257CrossRefGoogle Scholar
  6. 6.
    Suppes, G. J., Occhiogrosso, R.N. and McHugh, M.A. (1989) Oxidation of cumene in supercritical reaction media, Ind. Eng. Chem. Res. 28, 1152–1156CrossRefGoogle Scholar
  7. 7.
    Dooley, K.M. and Knopf, F.C. (1987) Oxidation catalysis in a supercritical fluid medium, Ind. Eng. Chem. Res. 26, 1910–1916CrossRefGoogle Scholar
  8. 8.
    Pang, T.-H., Ye,M., Knopf, F.C. and Dooley, K.M. (1991) Catalytic oxidation of model waste aromatic hydrocarbons in a dense fluid, Chem. Eng. Com. 110, 85–97Google Scholar
  9. 9.
    Zhou, L., Erkey, C. and Akgermae, A. (1995) Catalytic oxidation of toluene and tetralin in supercritical carbon dioxide, AIChE Journal 41, 2122–2130CrossRefGoogle Scholar
  10. 10.
    Siskin, M., Brons, G., Katritzky, A.R. and Balasubramanian, M. (1990) Aqueous organic chemistry. 3. Aquathermolysis: reactivity of ethers and esters, Energy & Fuels 4, 488–492CrossRefGoogle Scholar
  11. 11.
    Lowson, J.R. and Klein, M.T. (1985) Influence of water on guaiacol pyrolysis, Ind. Eng. Chem. Fundam. 24, 203–208CrossRefGoogle Scholar
  12. 12.
    Iyer, S.D., Nicol, G.N. and Klein, M.T. (1996) Hydrothermal reactions of 1-nitrobutaee ie hightemperature water, J. Supercrit. Fluids 9, 26–32CrossRefGoogle Scholar
  13. 13.
    Izzo, B., Harrell, C.L. and Klein, M.T. (1997) Nitrile reaction in high-temperature water: Kinetics and mechanism, AIChE Journal 43, 2048–2095CrossRefGoogle Scholar
  14. 14.
    Kruse, al., unpublishedGoogle Scholar
  15. 15.
    Sealock, L.J. Jr., Elliott, D.C., Baker, E.G. and Butner, R. S. (1993) Chemical processing in high-pressure aqueous environments. 1. Historical perspective and continuing developments, Ind. Eng. Chem, Res. 32, 1535–1541CrossRefGoogle Scholar
  16. 16.
    Yu, D., Aihara, M. and Antal, M. J. Jr. (1993) Hydrogen production by steam reforming glucose in supercritical water, Energy & Fuels 7, 574–577CrossRefGoogle Scholar
  17. 17.
    Holgate, H. R., Meyer, J.C. and Tester, J.W. (1995) Glucose hydrolysis and oxidation in supercritical water, AIChE Journal 41, 637–648CrossRefGoogle Scholar
  18. 18.
    Kruse, A. and Ebert, K.H., (1996) Chemical reactions ie supercritical water — 1. Pyrolysis of tert.-butylbenzene, Ber. Bunsenges. Phys. Chem. 100, 80–83CrossRefGoogle Scholar
  19. 19.
    Seasoning” or conditioning of the tube material at oxidative reaction conditions means forming a oxide layer. It is firstly done in supercritical water and afterwards in supercritical carbon dioxide. It is not likely that farther changes of the solvent system, for example from carbon dioxide to water can influence the chemical activity of the surface. Therefore the experiments presented here are comparable concerning surface effects.Google Scholar
  20. 20.
    Arthur, C.L., Killiam, L.M., Motiagh, S., Lim M., Potter, D.W. and Pavliszyn, J. (1992) Analysis of substituted benzene compounds in groundwater using solid-phase mircroextraction; Environ. Sci. Techmolo. 26, 979–983CrossRefGoogle Scholar
  21. 21.
    Software: Properties of Steam & Water(1990), American Society of Mechanical Engineers Google Scholar
  22. 22.
    Software for the Calculation of Thermodynamc Data in Reference Quality, CO2-Equation of Spann and Wagner Spann, R. and Wagner, W. (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressure up to 800 MPa, J. Phys. Chem. Ref. Data 25, 1509–1596Google Scholar
  23. 23.
    Savage, P.E., Li, R. and Santini, J.T. (1994) Methane to methanol in supercritical water; J. Supercrit. Fluids 7, 135–144CrossRefGoogle Scholar
  24. 24.
    Brock, E.E., Oshima, Y., Savage, P.E. and Baker, J.R. (1996) Kinetics and mechanism of methanol oxidation in supercritical water, J. Phys.Chem. 100, 15834–15842Google Scholar
  25. 25.
    Alkam, M. K., Pai, V.M., Butler, P.B. and Pitz, W.J. (1996) Methanol and hydrogen oxidation kinetics in water at supercritical states, Combustion and Flame 106, 110–130CrossRefGoogle Scholar
  26. 26.
    Boock, L.T. and Klein, M.T. (1993) Lumping strategy for modeling the oxidation of C1-C3 alcohols and acetic acid in high-temperature water; Ind. Eng. Chem. Res. 32, 2464–2473CrossRefGoogle Scholar
  27. 27.
    Wilk, R.D., Cernansky, N.P., Pilz, WJ. and Westbrook, C.K. (1989) Propene oxidation at low and intermediate temperatan a detailed chemical kinetic study, Combust Flame 77, 145–170CrossRefGoogle Scholar
  28. 28.
    Norton, T.S. and Dryer, F.L. (1989) Some new observations on methanol oxidation chemistry, Combust. Sci. Techmol. 63, 107–129CrossRefGoogle Scholar
  29. 29.
    Waroatz, J, Maas, U. and Dibble, R. W. (1996), Combustion: physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation, Springer-Verlag, Berl in HeidelbergGoogle Scholar
  30. 30.
    Ederer, H. J. and Mas, C.E. (1997) Studie eines vollständigen Cl-Reaktionsmecfaaeisraus in überkritischen Fluiden, Wissemschafliiche Berichte des Forschungszentrums Karlsruhe Energie und Umweit FZKA 5957, 56–80Google Scholar
  31. 31.
    Croiset, E. and Rice, S. F. (1998) Direct observation of H2O2 during alcohol oxidation by O2 in supercritical water, Ind. Emg. Chem. Res. 37, 1755–1760CrossRefGoogle Scholar
  32. 32.
    Fulle, D., Hamann, H. F., Hippler, H. and Troe, J. (1996) High pressure range of the addition of HO II. Temperature and pressure dependence of the reaction HO + CO O HOCO → H + CO2, J. Chem. Phys. 105, 983–1000CrossRefGoogle Scholar
  33. 33.
    Mizan, T.I., Savage, P.E. and Ziff R.M. (1997) Fugacity coefficients for free radicals in dense fluids: HO2 in supercritical water, AIChE Joumal 43, 1287–1299CrossRefGoogle Scholar
  34. 34.
    Holgate, H.R., Webley, P.A., Tester, J.W. and Helling, R.K. (1992) Carton monoxide oxidation in supercritical water: The effects of heat transfer and the water-gas shift reaction on observed kinetics, Energy A Fuels 6, 586–597CrossRefGoogle Scholar
  35. 35.
    Holgate, H.R, and Tester, J.W. (1994) Oxidations of hydrogen and carbon monoxide in sub- and supercritical water: Reaction kinetics, pathways, and density effects; 1. Experimental results. J. Phys. Chem. 98, 800–809CrossRefGoogle Scholar
  36. 36.
    Holgate, H.R. and Tester, J.W. (1994) Oxidations of hydrogen and carbon monoxide in sub- and supercritical waten Reaction kinetics, pathways, and density effects; 2. Elementary reaction modeling, J. Phys. Chem. 98, 810–822CrossRefGoogle Scholar
  37. 37.
    Dagaut, P., Daney de Mardllac, B., Tan, Y., Cathonnet, M. and Boettner, J.C. (1995) Chemical Meetic modeling of the supercritical water oxidation of simple fuels: H2, CO and CH4; J. Chim. Phys. 92, 1124–1141Google Scholar
  38. 38.
    Melius, C.F., Bergan, N.E. and Shepherd, J.E. (1990) Effects of water on combustion kinetics at high pressure; Proceedings of the 23 rd Symposium of Combustion, 217–223Google Scholar
  39. 39.
    Yu, J. and Savage, P.E. (1998) Decomposition of formic acid unto hydrothermal conditions, Ind. Eng. Chem Res. 37, 2–10CrossRefGoogle Scholar
  40. 40.
    Akiya, N.,and Savage, P.E. (1998) Role of water in formic acid decompositon, AIChE 44, 405–415CrossRefGoogle Scholar
  41. 41.
    Rice, S. F., Steeper, R.R. and Alken, J.D. (1998) Water density effects oe homogeneous water-gas shift reaction kinetics, J. Phys. Chem. A 102, 2673–2678CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • A. Kruse
    • 1
  • H. Ederer
    • 1
  • C. Mas
    • 1
  • H. Schmieder
    • 1
  1. 1.Institut für Technische ChemieForschungszentrum KarlsruheKarlsruheGermany

Personalised recommendations