Skip to main content

Destruction of Toxic Organic Materials Using Super-Critical Water Oxidation: Current State of the Technology

  • Chapter
Supercritical Fluids

Part of the book series: NATO Science Series ((NSSE,volume 366))

Abstract

In 1966 John Connolly of Standard Oil Co. published remarkable data on hydrocarbon solubilities in water at high temperatures and pressures [2]: he observed that, in some regions of the phase diagram, hydrocarbons (e.g., benzene, heptane) and water are miscible in all proportions. Rapid development of experimental techniques made Connolly’s work possible and speculations began about the consequences of his observations. For example, in 1970 Gerhard Schneider suggested the extension of wet air oxidation to higher temperatures for disposal of organic materials [3]. In the mid 1970’s Sanjay Amln, a student working with Robert Reid and Michael Modell at Massachusetts Institute of Technology (MIT), studied decomposition of organic compounds in hot water and found that the Intractable tars that formed below the critical temperature of water, disappeared above It. Research and development on supercritical water oxidation (SCWO) for disposal of organic waste materials began soon after [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The section,“Current SCWO Technology — Europe”, was contributed by ND.

    Google Scholar 

  2. Connelly, J.F. (1966) Solubility of hydrocarbons in water near the critical solution temperature, J. Chem. Eng. Data, 11, 1346.

    Google Scholar 

  3. Schneider, G.M. (1970) Phase equilibria in fluid mixtures at high pressures, in I. Prigogine and S.A. Rice (eds.) Advances in Chemical Physics, Vol. XVII, John Wiley, New York, p 39.

    Google Scholar 

  4. Tester, J.W. et al. (1993) Supercritical water oxidation technology, in D.W. Tedder and F.G. Pohland (eds.), Emerging Technologies in Hazardous Waste Management III, American Chemical Society Symposium Series No. 518.

    Google Scholar 

  5. Schilling, W. and Franck, E.U. (1988) Combustion and diffusion flames at high pressures to 2000 bar, Ber. Bunsenges. Phys. Chem. 92, 631–36.

    CAS  Google Scholar 

  6. Thomason, TB and Modell, M. (1984), Supercritical water destruction of aqueous wastes, Hazardous Waste 1 (4), 453–467.

    Article  CAS  Google Scholar 

  7. Welch, J.F. and Siegwarth, J.D. (1987) Destruction of Hazardous DOD Wastes by Chemical Reaction in a Supercritical Fluid, in R.D. Smith et al. (eds.), Supercritical Fluid Technologies: Basic Research Needs for DOD Applications, U.S. Army Research Office Workshop Report.

    Google Scholar 

  8. The Strategic Environmental Research and Development Program (SERDP). 9. Melius, Carl (1995) private communication.

    Google Scholar 

  9. A series of unpublished reports is available from Center for research in Water Resources at the University of Texas.

    Google Scholar 

  10. Shaw R.W., Brill TB, Clifford AA, Eckert CA, Franck EU (1991) Supercritical Water: A Medium for Chemistry, Chemical & Engineering News, 69, 26–39

    CAS  Google Scholar 

  11. Principal investigators at MIT Included: J. Harris, H. Herzog, J. Howard, R. Latanision, W. Peters, K. Smith, and J. Tester; at Delaware: T. Brill and M. Klein; at Texas: A. Bard, M. A. Fox, K. Johnston.

    Google Scholar 

  12. Hazelbeck, D.A. et al. (1995) Design of corrosion resistant HTO systems for DOD hazardous wastes, First International Workshop on Supercritical Water Oxidation, DOE, Amelia Island.

    Google Scholar 

  13. Kritzer, P. et al. (1998) Degradation of reactor materials in sub- and supercritical aqueous solutions, this meeting, poster session.

    Google Scholar 

  14. Latanision, R.W. and Shaw, R.W. (1993) Corrosion in supercritical water oxidation systems: Workshop Summary. MIT-EL 93–006.

    Google Scholar 

  15. Mitton, D.B. et al. (1998) Corrosion mitigation in SCWO systems for hazardous waste disposal, in Symposium on Corrosion in Supercritical Fluids, Corrosion 98, San Diego.

    Google Scholar 

  16. Peters, W.A. et al. (1996) Data needs to support modeling of supercritical water oxidation reactors and processes for chem demil applications, Massachusetts Institute of Technology Department of Chemical Engineering report MIT-EL 96–002.

    Google Scholar 

  17. Krishnan, A. (1998) Chemical process models for supercritical water oxidation of toxic organic materials, reports to the U.S. DOD Small Business Technology Transfer Program (unpublished).

    Google Scholar 

  18. Krishnan, A. (1998) Chemical process models for supercritical water oxidation of toxic organic materials, reports to the U.S. DOD Small Business Technology Transfer Program (unpublished).

    Google Scholar 

  19. COST is an infra-European program for cooperation in scientific research. D10 is a current COST program in chemistry: “Innovative methods and techniques for chemical transformations”.

    Google Scholar 

  20. Schmieder, H., Abeln, J. (1999) Scientific Reports of Research Center Karslruhe, FZKA 6271, pp 81–86

    Google Scholar 

  21. Schmieder, H., Dinjus, E., Goldacker, H., Kruse, A.; Proc. of the 4th Italian Conf. on Supercritical Fluids and their applications, Capri, September 1997, 343–348

    Google Scholar 

  22. Kritzer, P.; Boukis, N.; Dinjus, E. (22–25 September, 1997 ) EUROCORR′97, Trondheim, Norway, Volume II, p 229.

    Google Scholar 

  23. Fodi, S.; Konys, J., Haußelt, J., Schmidt, H., Casal, V. (March 1998) Proceedings of CORROSION/98, San Diego, USA.

    Google Scholar 

  24. Casal, V., Schmidt, H. (1998) Journal of Supercritical Fluids 13, 269–276.

    Article  CAS  Google Scholar 

  25. Kritzer, P.; Boukis, N. (1997) Patent, 19747696.1, PLA 9766.

    Google Scholar 

  26. Pilz, S. (1999) Scientific Reports of Research Center Karlsruhe, FZKA 6271, pp 89–94

    Google Scholar 

  27. Tiltscher, H., Forster, M., Brandes, G, Fill, G, Stocker, S. Kliemas, H. (1994) BayFORREST Report 2, p. 189

    Google Scholar 

  28. Finis, A., Brunner, G. (1996) in R. von Rohr, C. Trepp (eds), High Pressure Chemical Engineering, Elesevier Science, pp 179–184

    Google Scholar 

  29. FhG-ICT 103640 (December 1995) Final Report for the State of Baden-Württemberg.

    Google Scholar 

  30. Modell, M., Mayr, S., Kemna, A. (1995) Supercritical water oxidation of aqueous wastes, Off. Proc. 56th Int. Water Conf., 479.

    Google Scholar 

  31. Svensson, P. (Jan./Feb.l995) Chemical Technology Europe, 16.

    Google Scholar 

  32. Joussot-Dubien, C., Limousin, G., Sarrade, S. ( 1043 April 1999) Proc. of the 6th Meeting on Supercritical Fluids, Nottingham, pp 467–470

    Google Scholar 

  33. Bonneton, N., Appelghem, Th., Beslin, P., Ourdouillie, P., Cansell, T. (March 1998) Proc. 5th Meeting on Supercritical Fluids, Nice, pp 861–866.

    Google Scholar 

  34. Gidner, A., Stenmark, L., Abrahamson, J., Carlsson. L. (10-13 April 1999 ) Proc. of the 6th Meeting on Supercritical Fluids, Nottingham, pp 427–432

    Google Scholar 

  35. Weber, M., Trepp, C. (1996) in R. von Rohr, C. Trepp (eds), High Pressure Chemical Engineering, Elesevier Science, pp 565-574, 645–650.

    Google Scholar 

  36. La Roche, H.L., Weber, M., Zehnder, B. (1995) US Patent 5 437 798, 1. 8.

    Google Scholar 

  37. Alonso, E., Cocero, M.J., Torio, R., Vallelado, D., Fdz-Polanco, D., Fdz. Polanco, F. (1043 April 1999 ) Proc. of the 6th Meeting on Supercritical Fluids, Nottingham, pp 443–448

    Google Scholar 

  38. Alternative Technologies for the Destruction of Chemical Agents and Munitions (1993), Review and Evaluation of Alternative Chemical Disposal Technologies (1966), Using SCWO to Treat Hydrolysate from VX Neutralization (1998), National Academy Press.

    Google Scholar 

  39. Modell, M. (1995) First International Workshop on SCWO, Amelia Island, FL.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shaw, R.W., Dahmen, N. (2000). Destruction of Toxic Organic Materials Using Super-Critical Water Oxidation: Current State of the Technology. In: Kiran, E., Debenedetti, P.G., Peters, C.J. (eds) Supercritical Fluids. NATO Science Series, vol 366. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3929-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3929-8_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6236-4

  • Online ISBN: 978-94-011-3929-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics