Advertisement

Molecular Simulation and Modeling of Supercritical Water and Aqueous Solutions

  • A. A. Chialvo
  • P. T. Cummings
Chapter
  • 758 Downloads
Part of the NATO Science Series book series (NSSE, volume 366)

Abstract

Most biochemical and Industrial processes occur in solution, making It crucial to be able to understand solvatlon effects on solubility and chemical reactivity [1, 2]. Numerous recent developments have resulted In an Increased Interest in supercritical water (SCW) and aqueous solutions [3–5]. In particular, supercritical water Is generating Interest as an environmentally-benign solvent for a variety of chemical processes and technological applications Including selective -synthesis [6], coal conversion [7], deuteration of simple organic compounds [8], and conversion of organic waste to light feedstock [9], where water participates as a solvent, a catalyst, and a reactant. Perhaps the most promising application In this area Is the destructive oxidation of biochemical and pharmacological hazardous wastes, known as the supercritical water oxidation (SCWO) process [10-14].

Keywords

Supercritical Fluid Radial Distribution Function Water Model Partial Molar Volume Infinite Dilution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. (1989) Chemical Kinetics and Dynamics; Prentice Hall: Englewood Cliffs, Vol.Google Scholar
  2. 2.
    Amis, E. S.; Hinton, J. F. (1973) Solvent Effects on Chemical Phenomena; Academic Press: New York, Vol. 1.Google Scholar
  3. 3.
    Shaw, W. R.; Brill, T. B.; Clifford, A. A.; Eckert, C. A.; Frank, E. U. (1991) Supercritical Water. A Medium for Chemistry, Chemical and Engineering News 51, 26–39Google Scholar
  4. 4.
    Kiran, E.; Levelt Sengers, J. M. H. (1994) Supercritical Fluids. Fundamentals for Applications; Kluwer Academic Publishers: Dordrecht, Vol. E273.Google Scholar
  5. 5.
    Katritzky, A. R.; Allin, S. M.; Siskin, M. (1996) Aquathermolysis: Reactions of Organic Compounds with Superheated Water, Accounts in Chemical Research 29, 399–406CrossRefGoogle Scholar
  6. 6.
    Narayan, R.; Antal, M. J. (1989) Kinetic Elucidation of the Acid-catalyzed Mechanism of 1-propanol Dehydration in Supercritical Water. In Supercritical Fluid Science and Technology; K. P. K. P. Johnston and J. M. L. Penninger, Ed.; American Chemical Society: Washington, DC, Vol. 406; pp 226–241.Google Scholar
  7. 7.
    Modell, M.; Reid, R. C.; Amin, S. I. In U.S. Patent No. 1,113, 446; 1978.Google Scholar
  8. 8.
    Yao, J.; Evilia, R. F. (1994) Deuteration of Extremely Weak Organic Acids by Enhanced Acid-Base Reactivity in Supercritical Deuteroxide Solution, Journal of the American Chemical Society 116, 11229–11233CrossRefGoogle Scholar
  9. 9.
    Elliott, D. C. (1994) Chemical Processing in High-Pressure Aqueous Environments. 3. Batch Reactor Process Development Experiments for Organics Destruction, Industrial and Engineering Chemistry Research 33, 558–565CrossRefGoogle Scholar
  10. 10.
    Modell, M.; Gaudet, G. G.; Simson, M.; Hong, G. T.; Biemane, K. (1982) Supercritical Water, Solid Wastes Management 26–30Google Scholar
  11. 11.
    Thomason, T. B.; Hong, G. T.; Swallow, K. C.; Killilea, W. R. (1990) The MODAR Supercritical Water Oxidation Process, Thermal Process 1, 31–62Google Scholar
  12. 12.
    Thomason, T. B.; Modell, M. (1984) Supercritical Water Destruction of Aqueous Wastes, Hazardous Wastes 1, 453–467CrossRefGoogle Scholar
  13. 13.
    Tester, J. W.; Holgate, H. R.; Armellini, F. J.; Webley, P. A.; Killilea, W. R.; Hong, G. T.; Bamer, H. E. (1991) Supercritical Water Oxidation Technology: Process Development and Fundamental Research. In Emerging Technologies in Hazardous Waste Management III; D. W. Tedder and F. G. Pohland, Ed.; American Chemical Society: Washington, D.C., Vol. 518; pp 35.Google Scholar
  14. 14.
    Killilea, W. R.; Swallow, K. C.; Hong, G. T. (1992) The Fate of Nitrogen in Supercritical Water Oxidation, Journal of Supercritical Fluids 5, 72–78CrossRefGoogle Scholar
  15. 15.
    Savage, P. E.; Golapae, S.; Mizan, T. I.; Martino, C. J.; Brock, E. E. (1995) Reactions at Supercritical Conditions: Applications and Fundamentals, AICHE J. 41, 1723–1778CrossRefGoogle Scholar
  16. 16.
    Sengers, J. V.; Watson, J. T. F. (1986) Improved International Formulation for the Viscosity and Thermal Conductivity of Water Substance, Journal of Physical Chemistry. Reference Data 15, 1291–1314CrossRefGoogle Scholar
  17. 17.
    Lamb, W. J.; Hoffman, G. A.; Jonas, J. (1981) Self-Diffusion in Compressed Supercritical Water, Journal of Chemical Physics 74, 6875–6880CrossRefGoogle Scholar
  18. 18.
    Marshall, W. L.; Franck, E. U. (1980) Ion Product of Water Substance, 0–1000°C, 1–10000 bars. New International Formulation and its Background, Journal of Physical and Chemical Reference Data 10, 295–304CrossRefGoogle Scholar
  19. 19.
    de Loos, T. W.; van Dorp, J. H.; Lichtenthaler, R. N. (1983) Phase Equilibria and Critical Phenomena in Fluid (n-alkane+Water) Systems at High Pressures and Temperatures, Fluid Phase Equilibria 10, 279–287CrossRefGoogle Scholar
  20. 20.
    Connolly, J. F. (1966) Solubility of Hydrocarbons in Water Near the Critical Solution Temperature, Journal of Chemical and Engineering Data 11, 13–16CrossRefGoogle Scholar
  21. 21.
    Pray, H. A.; Schweickert, C. E.; Minnich, B. H. (1952) Industrial and Engineering Chemistry 44, 1146–1151CrossRefGoogle Scholar
  22. 22.
    Japas, M. L.; Franck, E. U. (1985) High Pressure Phase Equilibria and PVT Data of the Water-Oxygen System Including Water-Air to 673K and 250 MPa, Ber. Bunsenges. Physical Chemstry 89, 1268–1275CrossRefGoogle Scholar
  23. 23.
    Japas, M. L.; Franck, E. U. (1985) High Pressure Phase Equilibria and PVT-Data of the Water-Nitrogen System to 673K and 250MPa, Ber. Bunsenges. Physical Chemistry 89, 793–800CrossRefGoogle Scholar
  24. 24.
    Tödheide, K.; Franck, E. U. (1963) Das Zweiphasengebiet und die kritische Kurve im System Kohlendioxid-Wasser bis zu Drucken von 3500 bar, Z. Phys. Chem. Neue Folge 37, 387–401CrossRefGoogle Scholar
  25. 25.
    Seward, T. M.; Franck, E. U. (1981) The System Hydrogen-Water up to 440°C and 2500 bar Pressure, Ber. Busenges. Physical Chemistry 85, 2–7CrossRefGoogle Scholar
  26. 26.
    Huppert, G. L.; Wu, B. C.; Townsend, S. H.; Klein, M. T.; Paspek, S. C. (1989) Hydrolysis in Supercritical Water: Identification and Implications of a Polar Transition State, Industrial and Engineering Chemistry. Research 28, 161–165CrossRefGoogle Scholar
  27. 27.
    Penninger, J. M. L.; Kolmschate, J. M. M. (1989) Chemistry of Methoxynaphthalene in Supercritical Water. In Supercritical Fluid Science and Technology; K. P. Johnston and J. M. L. Penninger, Ed.; ACS: Washington, D.C., Vol. 406; pp 242–258.Google Scholar
  28. 28.
    Lawsoe, J. R.; Klein, M. T. (1985) Industrial and Engineering Chemistry. Research 24, 203–208Google Scholar
  29. 29.
    Webley, P. A.; Tester, J. W. (1989) Fundamental Kinetics of Methanol Oxidation in Supercritical Water. In Supercritical Fluid Science and Technology; K. P. Johnston and J. M. L. Penninger, Ed.; American Chemical Society: Washington, DC, Vol. 406; pp 259–275.Google Scholar
  30. 30.
    Mittoe, D. B.; Orzalli, J. C.; Latanision, R. M. (1995) Corrosion in Supercritical Water Oxidation Systems. In Physical Chemistry of Aqueous Systems: Meeting the Needs of Industry; H. J. White; J. V. Sengers; D. B. Neumann and J. C. Bellows, Ed.; Begell House: New York, pp 638–643.Google Scholar
  31. 31.
    Barner, H. E.; Huang, C. Y.; Johnson, T.; Jacobs, G.; Martch, M. A.; Killilea, W. R. (1992) Supercritical Water Oxidation: An Emerging Technology, Journal of Hazardous Materials 31, 1–17CrossRefGoogle Scholar
  32. 32.
    Modell, M. (1989) Supercritical-Water Oxidation. In Standard Handbook of Hazardous Waste Treatment and Disposal; H. M. Freeman, Ed.; McGraw-Hill: New York.Google Scholar
  33. 33.
    Torry, L. A.; Kaminsky, R.; Klein, M. T.; Klotz, M. R. (1992) The Effect of Salts on Hydrolysis in Supercritical and Near Critical Water: Reactivity and Availability, Journal of Supercritical Fluids 5, 163–168CrossRefGoogle Scholar
  34. 34.
    Quint, J. R.; Wood, R. H. (1985) Thermodynamics of a Charged Hard-Sphere Ion in a Compressible Dielectric Fluid. 2. Calculation of the Ion-Solvent Pair Correlation Function, the Excess Solvation, the Dielectric Constant near the Ion, and the Partial Molar Volume of the Ion in a Water-Like Fluid above the Critical Point, Journal of Physical Chemistry 89, 380–384CrossRefGoogle Scholar
  35. 35.
    Wood, R. H.; Carter, R. W.; Quint, J. R.; Majer, V.; Thompson, P.; Boccio, J. R. (1994) Aqueous Electrolytes at High Temperatures: Comparison of Experiment with Simulation and Continuum Models, Journal of Chemical Thermodynamics 26, 225–249CrossRefGoogle Scholar
  36. 36.
    Conway, B. E. (1981) Ionic Hydration in Chemistry and Biophysics; Elsevier: Amsterdam.Google Scholar
  37. 37.
    Activity Coefficients in Electrolyte Solutions; Pitzer, K. S., Ed.; CRC Press: Boca Raton, 1991.Google Scholar
  38. 38.
    Pitzer, K. S. (1995) Thermodynamics; 3rd ed.; McGraw-Hill: New York.Google Scholar
  39. 39.
    Mesmer, R. E.; Palmer, D. A.; Simonson, J. M. (1991) Ion Association at High Temperatures and Pressures. In Activity Coefficients in Electrolyte Solutions; 2nd Edition ed.; K. S. Pitzer, Ed.; CRC Press: Boca Raton; pp 491–529.Google Scholar
  40. 40.
    ISHR’97 In Fifth International Symposium on Hydrothermal Reactions; Gatlinburg, TN, 1997.Google Scholar
  41. 41.
    Chialvo, A. A.; Cummings, P. T. (1994a) Solute-induced Effects on the Structure and the Thermodynamics of Infinitely Dilute Mixtures, AICHE J. 40, 1558–1573CrossRefGoogle Scholar
  42. 42.
    Chialvo, A. A.; Cummings, P. T.; Simonson, J. M.; Mesmer, R. E. (1999) Solvation in High-Temperature Electrolyte Solutions. II. Some Formal Results, Journal of Chemical Physics 110, 1075–1086CrossRefGoogle Scholar
  43. 43.
    Cummings, P. T. (1994) Molecular Simulation of Near-Critical and Supercritical Fluids. In Supercritical Fluids. Fundamentals for Application; E. Kiran and J. M. H. Levelt Sengers, Ed.; Kluwer Academic Publishers: Dordrecht, Vol. E 273; pp 387–410.Google Scholar
  44. 44.
    Allen, M. P.; Tildesley, D. J. (1987) Computer Simulation of Liquids; Oxford University Press: Oxford.Google Scholar
  45. 45.
    Ben-Nairn, A.; Stillinger, F. H. (1972) In Structure and Transport of Processes in Water and Aqueous Solutions; R. A. Home, Ed.; Wiley-Interscience: New York.Google Scholar
  46. 46.
    Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; Hermans, J. (1981) Interaction Models for Water in Relation to Protein Hydration. In Intermolecular Forces: Proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry; B. Pullman, Ed.; Reidel: Dordrechh; pp 331–342.Google Scholar
  47. 47.
    Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. (1987) The Missing Term in Effective Pair Potentials, Journal of Physical Chemistry 91, 6269–6271CrossRefGoogle Scholar
  48. 48.
    Stillinger, F. H.; Rahman, A. (1974) Improved Simulation of Liquid Water by Molecular Dynamics, Journal of Chemical Physics 60, 1545–1557CrossRefGoogle Scholar
  49. 49.
    Jorgensen, W. L. (1982) Revised TIPS for Simulations of Liquid Water and Aqueous Solutions, Journal of Chemical Physics 77, 4156–4163CrossRefGoogle Scholar
  50. 50.
    Berweger, C. D.; van Gunsteren, W. F.; Müller-Plathe, F. (1995) Force Field Parametrization by Weak Coupling. Re-engineering SPC Water, Chemical Physics Letters 232, 429–436CrossRefGoogle Scholar
  51. 51.
    Cummings, P. T.; Cochran, H. D.; Simonson, J. M.; Mesmer, R. E.; Karabomi, S. (1991) Simulation of Supercritical Water and of Supercritical Aqueous Solutions, Journal of Chemical Physics 94, 5606–5621CrossRefGoogle Scholar
  52. 52.
    Cochran, H. D.; Cummings, P. T.; Karaborni, S. (1992) Solvation in Supercritical Water, Fluid Phase Equilibria 71, 1–16CrossRefGoogle Scholar
  53. 53.
    Panaglotopouios, A. Z. (1987) Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble, Molecular Physics 61, 813–826CrossRefGoogle Scholar
  54. 54.
    Kofke, D. A. (1993) Gibbs-Duhem Integration: A New Method for the Direct Evaluation of Phase Coexistence by Molecular Simulation, Molecular Physics 78, 1331–1336CrossRefGoogle Scholar
  55. 55.
    Kiyohara, K.; Gubbins, K. E.; Panagiotopoulos, A. Z. (1998) Phase Coexistence Properties of Polarizable Water Models, Molecular Physics 94, 803–808CrossRefGoogle Scholar
  56. 56.
    Emngton, J. R.; Kiyohara, K.; Gubbins, K. E.; Panagiotopoulos, A. Z. (1997) Monte Carlo Simulation of High-Pressure Phase Equilibria in Aqueous Systems, Fluid Phase Equilibria 151, 33–40Google Scholar
  57. 57.
    Beveridge, D. L.; Mezei M.; Mehrotra, P. K.; Marchese, F. T.; Ravi-Shanker, G.; Vasu, T.; Swamraathan, S. (1983) Monte Carlo simulation studies of the equilibrium properties and structure of liquid water. In Molecular-Based Study of Fluids; J. M. Haile and G. A. Mansoori, Ed.; American Chemical Society: Washington, D.C., Vol. 204; pp 298–351.Google Scholar
  58. 58.
    Stillinger, F. H. (1980) Water Revisited, Science 209, 451–457CrossRefGoogle Scholar
  59. 59.
    Camie, S. L.; Patey, G. N. (1982) Fluids of Polarizable Hard Spheres with Dipoles and Tetrahedral Quadrapoles. Integral Equation Results with Applications to Liquid Water, Molecular Physics 47, 1129–1151CrossRefGoogle Scholar
  60. 60.
    Chialvo, A. A.; Cummings, P. T. (1999) Molecular-based Modeling of Water and Aqueous Solutions at Supercritical Conditions. In Advances in Chemical Physics; S. A. Rice, Ed.; Wiley & Sons: New York, Vol. 109; pp 115–205.Google Scholar
  61. 61.
    Chialvo, A. A. (1996) On the Realism of the Re-engineered SPC water model, Journal of Chemical Physics 104, 5240–5243CrossRefGoogle Scholar
  62. 62.
    Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. (1983) Comparison of Simple Potential Functions for Simulating Liquid Water, Journal of Chemical Physics 79, 926–935CrossRefGoogle Scholar
  63. 63.
    Boulougouris, G. C; Economou, I. G.; Theodorou, D. N. (1998) Engineering a Molecular Model for Water Phase Equilibrium over a Wide Temperature Range, Journal of Physical Chemistry B 102, 1029–1035CrossRefGoogle Scholar
  64. 64.
    Evans, M. W. (1986) Molecular Dynamics Simulation of New Auto and Cross Correlations in Liquid Water, Journal of Molecular Liquids 32, 173–181CrossRefGoogle Scholar
  65. 65.
    Chialvo, A. A.; Cummings, P. T. (1994) Hydrogen Bonding in Supercritical Water, Journal of Chemical Physics 101, 4466–4469CrossRefGoogle Scholar
  66. 66.
    de Pablo, J. J.; Prausnitz, J. M.; Strauch, H. J.; Cummings, P. T. (1991) Molecular Simulation of Water Along the Liquid-Vapor Coexistence Curve from 25°C to the Critical Point, Journal of Chemical Physics 93, 7355–7359CrossRefGoogle Scholar
  67. 67.
    Guissani, Y.; Guillot, B. J. (1993) A Computer Simulation Study of the Liquid-Vapor Coexistence Curve of Water, Journal of Chemical Physics 98, 8221–8235CrossRefGoogle Scholar
  68. 68.
    Strauch, H. J.; Cummings, P. T. (1992) Comment on: Molecular Simulation of Water Along the Liquid-Vapor Coexistence Curve from 25°C to the Critical Point, Journal of Chemical Physics 96, 864–865CrossRefGoogle Scholar
  69. 69.
    Teleman, O.; Jönsson, B.; Engström, S. (1987) A Molecular Dynamics Simulation of a Water Model with Intramolecular Degrees of Freedom, Molecular Physics 60, 193–203CrossRefGoogle Scholar
  70. 70.
    Bopp, P.; Jancso, G.; Heinziger, K. (1983) An Improved Potential for Non-Rigid Water Molecules in the Liquid Phase, Chemical Physics Letters 98, 129–133CrossRefGoogle Scholar
  71. 71.
    Tuckerman, M; Berne, B.; Martyna, G. (1992) Reversible Multiple Time Scale Molecular Dynamics, Journal of Chemical Physics 97, 1990–2001CrossRefGoogle Scholar
  72. 72.
    Lemberg, H.; Stillinger, F. (1975) Journal of Chemical Physics 62, 1677–1690CrossRefGoogle Scholar
  73. 73.
    Wallqvist, A.; Teleman, O. (1991) Properties of Flexible Water Models, Molecular Physics 74, 515–533CrossRefGoogle Scholar
  74. 74.
    Zhu, S.-B.; Wong, C. (1993) Sensitivity Analysis of Water Thermodynamics, Journal of Chemical Physics 98, 8892–8899CrossRefGoogle Scholar
  75. 75.
    Rullmann, J. A. C; van Duijnen, P. T. (1988) A Polarizable Water Model for Calculation of Hydratlon Energies, Molecular Physics 63, 451–475CrossRefGoogle Scholar
  76. 76.
    Ahlström, P.; Wallqvist, A.; Eegström, S.; Jönsson, B. (1989) A Molecular Dynamics Study of Polarizable Water, Molecular Physics 68, 563–581CrossRefGoogle Scholar
  77. 77.
    Kuwajima, S.; Warshel, A. (1990) Incorporating Electric Polarizabilities in Water-Water Interaction Potentials, Journal of Physical Chemistry 94, 460–466CrossRefGoogle Scholar
  78. 78.
    Dang, L. X. (1992) The Nonadditive Intermolecular Potential for Water Revised, Journal of Chemical Physics 97, 2659–2660CrossRefGoogle Scholar
  79. 79.
    Clementi, E.; Corongiu, G.; Sciortino, F. (1993) Liquid and Solid Phases of Water: An Extensive Molecular Dynamics Simulation with an ab initio Polarizable Potential, Journal of Molecular Structure 296, 205–213CrossRefGoogle Scholar
  80. 80.
    Corongiu, G.; Clementi, E. (1993) Molecular Dynamics Simulation with a Flexible and Polarizable Potential: Density of States for Liquid Water at Different Temperatures, Journal of Chemical Physics 98, 4984–4990CrossRefGoogle Scholar
  81. 81.
    Brodholt, J.; Sampoli, M.; Vallauri, R. (1995) Parameterizing a Polarizable Intermolecular Potential for Water, Molecular Physics 86, 149–158CrossRefGoogle Scholar
  82. 82.
    Kusalik, P. G.; Svishchev, I. M. (1994) The Spatial Structure in Liquid Water, Science 265, 1219–1221CrossRefGoogle Scholar
  83. 83.
    Svishchev, I. M.; Kusalik, P. G.; Wang, J.; Boyd, R. J. (1996) Polarizable point-charge Model of Water: Results under Normal and Extreme Conditions, Journal of Chemical Physics 105, 4742–4750CrossRefGoogle Scholar
  84. 84.
    Brodholt, J.; Sampoli, M.; Vallauri, R. (1995) Parameterizing Polarizable Intermolecular Potentials for Water with the Ice 1h Phase, Molecular Physics 85, 81–90CrossRefGoogle Scholar
  85. 85.
    Chialvo, A. A.; Cummings, P. T. (1996) Engineering a Simple Polarizable Model for the Molecular Simulation of Water Applicable Over Wide Ranges of State Conditions, Journal of Chemical Physics 105, 8274–8281CrossRefGoogle Scholar
  86. 86.
    Chialvo, A. A.; Cummings, P. T. (1998) Simple Transferable Intermolecular Potential for the Molecular Simulation of Water over Wide Ranges of State Conditions, Fluid Phase Equilibria 155–151, 73–81CrossRefGoogle Scholar
  87. 87.
    Zhu, S.-B.; Singh, S.; Robinson, G. W. (1991) A New Flexible/Polarizable Water Model, Journal of Chemical Physics 95, 2791–2799CrossRefGoogle Scholar
  88. 88.
    Rick, S. W.; Stuart, S. J.; Berne, B. J. (1994) Dynamical Fluctuating Charge Force Fields: Application to Liquid Water, Journal of Chemical Physics 101, 6141–6156CrossRefGoogle Scholar
  89. 89.
    Sprik, M.; Klein, M. L. (1988) A Polarizable Model for Water using Distributed Charge Sites, Journal of Chemical Physics 89, 7556–7560CrossRefGoogle Scholar
  90. 90.
    Eisenberg, D.; Kauzmann, W. (1969) The Structure and Properties of Water; Oxford University Press: New York.Google Scholar
  91. 91.
    Ruocco, G.; Sampoli, M. (1995) Computer Simulation of Polarizable Fluids: On the Determination of the Induced Dipoles, Molecular Simulations 15, 281–300CrossRefGoogle Scholar
  92. 92.
    Nosé, S. (1984) A Molecular Dynamics Method for Simulations in the Canonical Ensemble, Molecular Physics 52, 255–268CrossRefGoogle Scholar
  93. 93.
    Andersen, H. C. (1980) Molecular Simulations at Constant Pressure and/or Temperature, Journal of Chemical Physics 72, 2384–2393CrossRefGoogle Scholar
  94. 94.
    Tironi, I. G.; Brunne, R. M.; van Gunsteren, W. F. (1996) On the Relative Merits of Flexible versus Rigid Models for Use in Computer Simulations of Molecular Liquids, Chemical Physics Letters 250, 19–24CrossRefGoogle Scholar
  95. 95.
    Roberts, J. E.; Woodman, B. L.; Schnitker, J. (1996) The Reaction Field Method in Molecular Dynamics Simulation of Poiet-Polarizable Water Models, Molecular Physics 88, 1089–1108CrossRefGoogle Scholar
  96. 96.
    Soper, A. K.; Phillips, M. G. (1986) A New Determination of the Structure of Water at 25°C, Chemical Physics 107, 47–60CrossRefGoogle Scholar
  97. 97.
    Hoffmann, M. M.; Conradi, M. S. (1997) Are There Hydrogen Bonds in Supercritical Water?, Journal of the American Chemical Society 119, 3811–3817CrossRefGoogle Scholar
  98. 98.
    Matubayasi, N.; Wakai, C.; Nakahara, M. (1997) NMR Study of Water Structure in Super-and Subcritical Conditions, Physical Review Letters 78, 2573–2576CrossRefGoogle Scholar
  99. 99.
    Matubayasi, M.; Wakai, C.; Nakahara, M. (1997) Structural Study of Supercritical Water. I. Nuclear Magnetic Resonance Spectroscopy, Journal of Chemical Physics 107, 9133–9140CrossRefGoogle Scholar
  100. 100.
    Walrafen, G. E.; Fisher, M. R.; Hokmabadi, M. S.; Yang, W.-H. (1986) Temperature Dependence of the Low- and High-frequency Raman Scattering from Liquid Water, Journal of Chemical Physics 85, 6970–6982CrossRefGoogle Scholar
  101. 101.
    Okada, K.; Imashuku, Y.; Yao, M, (1997) Microwave Spectroscopy of Supercritical Water, Journal of Chemical Physics 107, 9302–9311CrossRefGoogle Scholar
  102. 102.
    Rao, C. N. R. (1972) Theory of Hydrogen Bonding in Water. In Water. A Comprehensive Treatise; F. Franks, Ed.; Plenum Press: New York, Vol. 1; pp 93–113.Google Scholar
  103. 103.
    No-author (1996) General Discussion, Faraday Discussions 103, 91–116CrossRefGoogle Scholar
  104. 104.
    Mezei, M.; Beveridge, D. L. (1981) Theoretical Studies of Hydrogen Bonding in Liquid Water and Dilute Aqueous Solutions, Journal of Chemical Physics 74, 622–632CrossRefGoogle Scholar
  105. 105.
    Sceats, M. G.; Rice, S. A. (1980) The Water-water Pair Potential Near the Hydrogen Bonded Equilibrium Configuration, Journal of Chemical Physics 72, 3236–3247CrossRefGoogle Scholar
  106. 106.
    Rahman, A.; Stillinger, F. H. (1971) Molecular Dynamics of Liquid Water, Journal of Chemical Physics 55, 3336–3359CrossRefGoogle Scholar
  107. 107.
    Stillieger, F. H.; Rahman, A. (1972) Molecular Dynamics Study of Temperature Effects on Water Structure and Kinetics, Journal of Chemical Physics 57, 1281–1292CrossRefGoogle Scholar
  108. 108.
    Luzar, A.; Chandler, D. (1993) Structure and Hydrogen Bond Dynamics of Water- Dimethyl Sulfoxide Mixtures by Computer Simulation, Journal of Chemical Physics 98, 8160–8173CrossRefGoogle Scholar
  109. 109.
    Mountain, R. D. (1989) Molecular Dynamics Investigation of Expanded Water at Elevated Temperatures, Journal of Chemical Physics 90, 1866–1870CrossRefGoogle Scholar
  110. 110.
    Jorgensen, W. L. (1978) Monte Carlo Simulations of Liquid Hydrogen Fluoride, Journal of the American Chemical Society 100, 7824–7831CrossRefGoogle Scholar
  111. 111.
    Mizan, T. L; Savage, P. E.; Ziff, R. M. (1996) Temperature Dependence of Hydrogen Bonding in Supercritical Water, Journal of Physical Chemistry 100, 403–408CrossRefGoogle Scholar
  112. 112.
    Chialvo, A. A.; Cummings, P. T. (1996) Microstructure of Ambient and Supercritical Water. A Direct Comparison Between Simulation and Neutron Scattering Experiments, Journal of Physical Chemistry 100, 1309–1316CrossRefGoogle Scholar
  113. 113.
    Nakahara, M.; Yamaguchi, T.; Ohtaki, H. (1997) The Structure of Water and Aqueous Electrolyte Solutions under Extreme Conditions, Recent Research and Developments in Physical Chemistry 1, 17–49Google Scholar
  114. 114.
    Kalinichev, A. G.; Bass, J. D. (1994) Hydrogen Bonding in Supercritical Water: A Monte Carlo Simulation, Chemical Physics Letters 231, 301–307CrossRefGoogle Scholar
  115. 115.
    De Santis, A.; Rocca, D. (1997) Angular Distribution Functions and Specific Local Structures in Liquid Water, Journal of Chemical Physics 107, 10096–10101CrossRefGoogle Scholar
  116. 116.
    Soper, A. K.; Bruni, F.; Ricci, M. A. (1997) Site-Site Pair Correlation Functions of Water from 25°C to 400°C: Revised Analysis of New and Old Diffraction Data, Journal of Chemical Physics 106, 247–254CrossRefGoogle Scholar
  117. 117.
    Bellissent-Funel, M.-C.; Tassaing, T.; Zhao, H.; Beysens, D.; Guillot, B.; Guissani, Y. (1997) The Structure of supercritical Heavy Water as Studied by Neutron Diffraction, Journal of Chemical Physics 107, 2942–2949CrossRefGoogle Scholar
  118. 118.
    Schmidt, R.; Brickmann, J. (1998) Molecular Dynamics Simulation of the Proton Transport in Water, Ber, Busenges. Physical Chemistry 101, 1816–1827CrossRefGoogle Scholar
  119. 119.
    Kalinichev, A. G.; Bass, J. D. (1995) Computer Simulations of Supercritical Water over a Wide Range of Densities. In Physical Chemistry of Aqueous Solutions: Meeting the Needs of Industry; H. J. White; J. V. Seegers; D. B. Neumann and J. C. Bellows, Ed.; Begell House: new York; pp 245–252.Google Scholar
  120. 120.
    Svishchev, I. M.; Kusalik, P. G. (1993) Structure in Liquid Water: A Study of Spatial Distribution Functions, Journal of Chemical Physics 99 3049–3058CrossRefGoogle Scholar
  121. 121.
    Postorino, P.; Tromp, R. H.; Ricci, M. A.; Soper, A. K.; Neilson, G. W. (1993) The Interatomic Structure of Water at Supercritical Temperatures, Letters to Nature 366, 668–670CrossRefGoogle Scholar
  122. 122.
    Marchi, R. P.; Eyring, H. J. (1964) Application of Significant Structure Theory to Water, Journal of Physical Chemistry 68, 221–228CrossRefGoogle Scholar
  123. 123.
    Luck, W. A. P. (1965) Association of Water. III. Temperature Dependence of the Water Bands up to the Critical Point, Ber. Bunsenges Physical Chemistry 69, 627–637Google Scholar
  124. 124.
    Franck, E. U.; Roth, K. (1967) Infra-Red Absorption of HDO in Water at High Pressure and Temperatures, Discussion of the Faraday Society 43, 108–114CrossRefGoogle Scholar
  125. 125.
    Bondarenko, G. V.; Gorbaty, Y. E. (1973) n3 HDO Infrared Spectra at High Pressures and Temperatures, Dokl. Phys. Chem. 210, 369–371Google Scholar
  126. 126.
    Vetrov, A. A.; Kondratov, O. I.; Yukhnevich, G. V. (1975) Spectrum of the Intermolecular Vibration of Water, Australian Journal of Chemistry 28, 2099–2107CrossRefGoogle Scholar
  127. 127.
    Gorbaty, Y. E.; Demyanets, Y. N. (1983) The Pair Correlation Functions of Water at a Pressure of 1000 bar in the Temperature Range of 25–500°C, Chemical Physics Letters 100, 450–454CrossRefGoogle Scholar
  128. 128.
    Gorbaty, Y. E.; Demyanets, Y. N. (1983) X-ray Diffraction Studies of the Structure of Liquid and Supercritical Water at High Temperatures and Pressures. II. The Molecular Density Radial Distribution Functions and the Paired Correlation Functions, Journal of Structural Chemistry (Engt version) 24, 385–392CrossRefGoogle Scholar
  129. 129.
    De Santis, A.; Rocca, D. (1997) The Local Order in Liquid Water Studied through Restricted Averages of the Angular Correlation Function, Journal of Chemical Physics 107, 9559–9568CrossRefGoogle Scholar
  130. 130.
    Chialvo, A. A.; Cummings, P. T. (1998) Supercritical Water and Aqueous Solutions: Molecular Simulation. In Encyclopedia of Computational Chemistry; N. L. Allinger, Ed.; Wiley & SonsGoogle Scholar
  131. 131.
    Löffler, G.; Schreiber, H.; Steinhauser, O. (1994) Computer Simulation as a Tool to Analyze Neutron Scattering Experiments: Water at Supercritical Temperatures, Ber. Bunsenges. Phys. Chem. 98, 1575–1578CrossRefGoogle Scholar
  132. 132.
    Kalinichev, A. G. (1986) Monte Carlo Simulation of the Thermodynamics and Structure of Dense Supercritical Water, International Journal of Thermophysics 7, 887–900CrossRefGoogle Scholar
  133. 133.
    Cummings, P. T.; Chialvo, A. A.; Cochran, H. D. (1994) Molecular Simulation Study of Solvation Structure in Supercritical Aqueous Solutions, Chemical Engineering Science 49, 2735–2748CrossRefGoogle Scholar
  134. 134.
    Cummings, P. T.; Cochran, H. D.; Chialvo, A. A. (1995) Molecular Simulation of Supercritical Aqueous Solutions. In Physical Chemistry of Aqueous Systems; H. J. White Jr.; J. V. Seegers; D. B. Neumann and J. C. Bellows, Ed.; Begell House: New York; pp 253–260.Google Scholar
  135. 135.
    Mountain, R. D. (1995) Comparison of a Fixed-Charge and a Polarizable Water Model, Journal of Chemical Physics 103, 3084–3090CrossRefGoogle Scholar
  136. 136.
    Mizan, T. I.; Savage, P. E.; Ziff, R. M. (1995) A Molecular Dynamics Investigation of Hydrogen Bonding in Supercritical Water. In Innovations in Supercritical Fluids: Science and Technology; K. W. Hutcheeson and N. R. Foster, Ed.; American Chemical Society: Washington, D.C., Vol. 608; pp 47–64.Google Scholar
  137. 137.
    Kalinichev, A. G.; Bass, J. D. (1997) Hydrogen Bonding in Supercritical Water. 2. Computer Simulations, Journal of Physical Chemistry 101, 9720–9727CrossRefGoogle Scholar
  138. 138.
    Gorbaty, Y. E.; Kalinichev, A. G. (1995) Hydrogen Bonding in Supercritical Water. I. Experimental Results, Journal of Physical Chemistry 99, 5336–5340CrossRefGoogle Scholar
  139. 139.
    Jedlovszky, P.; Brodholt, J. P.; Bruni, F.; Ricci, M. A.; Soper, A. K.; Vallauri, R. (1998) Analysis of the Hydrogen-bonded Stracture of Water from Ambient to Supercritical Conditions, Journal of Chemical Physics 108, 8528–8540CrossRefGoogle Scholar
  140. 140.
    Geiger, A.; Stillinger, F. H.; Rahman, A. (1979) Aspects of the Percolation Process for Hydrogen-Bond Networks in Water, Journal of Chemical Physics 70, 4185–4193CrossRefGoogle Scholar
  141. 141.
    Stanley, H. E.; Teixeira, J. (1980) Interpretation of the Unusual Behavior of H2O and D2O at Low Temperatures: Tests of a Percolation Model, Journal of Chemical Physics 73, 3404–3422CrossRefGoogle Scholar
  142. 142.
    Geiger, A.; Mausbach, P. (1991) Molecular Dynamics Simulation Studies of the Hydrogen Bond Network in Water. In Hydrogen-Bonded Liquids; J. C. Dore and J. Teixeira, Ed.; Kluwer Academic Publishers: pp 171 - 183.Google Scholar
  143. 143.
    Enderby, J. E.; Nielsen, G. W. (1979) X-ray and Neutron Scattering by Aqueous Solutions. In Water: A Comprehensive Treatise; F. Franks, Ed.; Plenum Press: New York, Vol. 6; pp 1–46.Google Scholar
  144. 144.
    Soper, A. K. (1986) On the Determination of the Pair Correlation Function from Liquid Stracture Factor Measurements, Chemical Physics 107, 61–74CrossRefGoogle Scholar
  145. 145.
    Finney, J. L.; Soper, A. K. (1994) Solvent Stracture and Perturbations in Solutions of Chemical an Biological Importance, Chemical Society Review 23, 1–10CrossRefGoogle Scholar
  146. 146.
    Enderby, J. E. (1995) Ion Solvation via Neutron Scattering, Chemical Society Review 24, 159–168CrossRefGoogle Scholar
  147. 147.
    Guillot, B.; Guissani, Y. (1998) Hydrogen-bonding in Light and Heavy Water under Normal and Extreme Conditions, Fluid Phase Equilibria 151, 19–32CrossRefGoogle Scholar
  148. 148.
    Lie, G. C. (1986) Consistency Check for Radial Distribution Functions of Water, Journal of Chemical Physics 85, 7495–7497CrossRefGoogle Scholar
  149. 149.
    Buontempo, U.; Postorino, P.; Ricci, M. A.; Soper, A. K. (1992) Neutron Diffraction Study of Water at High Temperature, Europhysics Letter 19, 385–389CrossRefGoogle Scholar
  150. 150.
    Postorieo, P.; Ricci, M. A.; Soper, A. K. (1994) Water above its Boiling Point: Study of the Temperature and Density Dependence of the Partial Pair Correlation Functions. I. Neutron Diffraction Experiment, Journal of Chemical Physics 101, 4123–4132CrossRefGoogle Scholar
  151. 151.
    Tromp, R. H.; Postorino, P.; Nielson, G. W.; Ricci, M. A.; Soper, A. K. (1994) Neutron Diffraction Studies of H2O/D2O at Supercritical Temperatures. A Direct Determination of gHH(r), gOH(r), and gOO(r), Journal of Chemical Physics 101, 6210–6215CrossRefGoogle Scholar
  152. 152.
    Chialvo, A. A.; Cummings, P. T.; Simonson, J. M.; Mesmer, R. E.; Cochran, H. D. (1998) The Interplay Between Molecular Simulation and Neutron Scattering in Developing New Insights into the Stracture of Water, Industrial and Engineering Chemistry Research 37, 3021–3025CrossRefGoogle Scholar
  153. 153.
    Carey, D. M.; Korenowski, G. M. (1998) Measurement of the Raman Spectrum of Liquid Water, Journal of Chemical Physics 108, 2669–2675CrossRefGoogle Scholar
  154. 154.
    Narten, A. H.; Levy, H. A. (1971) Liquid Water: Molecular Correlation Functions from X-ray Diffraction, Journal of Chemical Physics 55, 2263–2269CrossRefGoogle Scholar
  155. 155.
    Gorbaty, Y. E.; Demyanets, Y. N. (1985) An X-ray Study of the Effect of Pressure on the Structure of Liquid Water, Molecular Physics 55, 571–588CrossRefGoogle Scholar
  156. 156.
    Postorino, P.; Nardone, M.; Ricci, M. A.; Rovere, M. (1995) Inelasticity Effects in the Neutron Diffraction Measurements from Water Steam using Pulsed Sources, Journal of Molecular Liquids 64, 221–240CrossRefGoogle Scholar
  157. 157.
    Montague, D. G. (1991) H/D Substitution in Neutron Diffraction. In Hydrogen-Bonded Liquids; J. C. Dore and J. Teixeira, Ed.; Kluwer Academic Publishers: Dordrecht, Vol. C 329; pp 129–137.Google Scholar
  158. 158.
    Fois, E. S.; Sprik, M.; Parrinello, M. (1994) Properties of Supercritical Water: An ab initio Simulation, Chemical Physics Letters 223, 411–415CrossRefGoogle Scholar
  159. 159.
    Yamanaka, K.; Yaraaguchi, T.; Wakita, H. (1994) Structure of Water in the Liquid and Supercritical States by Rapid X-ray Diffractometry Using an Imaging Plate Detector, Journal of Chemical Physics 101, 9830–9836CrossRefGoogle Scholar
  160. 160.
    Ohtaki, H.; Radnai, T.; Yamaguchi, T. (1997) Structure of Water under Subcritical and Supercritical Conditions Studied by Solution X-ray Diffraction, Chemical Society Reviews 26, 41–51CrossRefGoogle Scholar
  161. 161.
    Yamaguchi, T. (1998) Structure of Subcritical and Supercritical Hydrogen-Bonded Liquids and Solutions, Journal of Molecular Liquids 78, 43–50CrossRefGoogle Scholar
  162. 162.
    Jedlovszky, P.; Vallauri, R. (1996) Reverse Monte Carlo Analysis of Neutron-Diffraction Results. Water around its Critical Point, Journal of Chemical Physics 105, 2391–2398CrossRefGoogle Scholar
  163. 163.
    McGreevy, R. L.; Pusztai, L. (1988) Reverse Monte Carlo Simulation: A New Technique for the Determination of Disordered Structures, Molecular Simulation 1, 359–367CrossRefGoogle Scholar
  164. 164.
    Narten, A. H.; Thiessen, W. E.; Blum, L. (1982) Atom pair distribution functions of liquid water at 25°C from neutron diffraction, Science 217, 1033–1034CrossRefGoogle Scholar
  165. 165.
    Physical Chemistry of Aqueous Systems: Meeting the Needs of Industry; White Jr., H. J.; Sengers, J. V.; Neumann, D. B.; Bellows, J. C., Ed.; Begell House: New York, 1995.Google Scholar
  166. 166.
    Lee, L. L.; Debenedetti, P. G.; Cochran, H. D. (1991) Fluctuation Theory of Supercritical Solutions. In Supercritical Fluid Technology: Reviews in Modern Theory and Applications; T. J. Bruno and J. F. Ely, Ed.; CRC Press: Boca Raton, pp 193–226.Google Scholar
  167. 167.
    Chialvo, A. A. (1993a) Solute-Solute and Solute-Solvent Correlations in Dilute Near-Critical Ternary Mixtures: Mixed Solute and Entraîner Effects, Journal of Physical Chemistry 97, 2740–2744CrossRefGoogle Scholar
  168. 168.
    Cui, S. T.; Harris, J. G. (1994) Ion Association and Liquid Structure in Supercritical Water Solutions of Sodium-Chloride: A Microscopic View from Molecular Dynamics Simulations, Chemical Engineering Science 49, 2749–2763CrossRefGoogle Scholar
  169. 169.
    Rodger, P. M. (1996) Local Structure and Local Symmetry in Dilute Solutions, Molecular Physics 89, 1157–1172CrossRefGoogle Scholar
  170. 170.
    Tucker, S. C.; Maddox, M. W. (1998) The Effect of Solvent Density Inhomogeneities on Solute Dynamics in Supercritical Fluids: A theoretical Perspective, Journal of Physical Chemistry B 102, 2437–2453CrossRefGoogle Scholar
  171. 171.
    Robinson, R. A.; Stokes, R. H. (1970) Electrolyte Solutions; 2nd. (revised) ed.; Butterworths: London.Google Scholar
  172. 172.
    Lee, S. H.; Cummings, P. T.; Simonson, J. M.; Mesmer, R. E. (1998) Molecular Dynamics Simulation of the Limiting Conductance of NaCl in Supercritical Water, Chemical Physics Letters 293, 289–294CrossRefGoogle Scholar
  173. 173.
    Marcus, Y. (1985) Ion Salvation; John Wiley & Sons Ltd.: Chichester.Google Scholar
  174. 174.
    Petracci, S. (1971) Statistical Thermodynamics of Ionic Association and Complexation in Dilute Solutions of Electrolytes. In Ionic Interactions. From Dilute Solutions to Fused Salts; S. Petracci, Ed.; Academic Press: New York, Vol. 1; pp 117–177.Google Scholar
  175. 175.
    Chialvo, A. A.; Cummings, P. T.; Simonson, J. M.; Mesmer, R. E. (1996) Temperature and Density Effects On The High Temperature Ionic Speciation in Dilute Na+/Cl-Aqueous Solutions, Journal of Chemical Physics 105, 9248–9257CrossRefGoogle Scholar
  176. 176.
    Slusher, J. T.; Cummings, P. T. (1997) Molecular Simulation of Tetraalkylammonium Halides. 1.Google Scholar
  177. Solvation Structure and Hydrogen Bonding in Aqueous Solutions, Journal of Physical Chemistry B 101 3818–3826Google Scholar
  178. 177.
    Guillot, B.; Guisani, Y. (1995) Thermodynamics and Structure of Hydrophobic Hydration by Computer Simulation. In Properties of Water and Steam: Physical Chemistry of Aqueous Systems Meeting the Needs of Industry; H. J. White; J. V. Sengers; D. B. Neumann and J. C. Bellows, Ed.; Begell House, Inc.: New York, pp 269–277.Google Scholar
  179. 178.
    Walshaw, J.; Goodfellow, J. M. (1993) Distribution of Solvent Molecules around Apolar Side-chains in Protein Crystals, Journal of Molecular Biology 231, 392–414CrossRefGoogle Scholar
  180. 179.
    Ben-Nairn, A. (1994) Hydrophobic-Hydrophilic Forces in Protein Folding. In Structure and Reactivity in Aqueous Solutions; C. J. Cramer and D. G. Thralar, Ed.; American Chemical Society: Washington, D.C., Vol. 568; pp 371–380.Google Scholar
  181. 180.
    Kinoshita, M.; Okamoto, Y.; Hirata, F. (1997) Solvation structure and stability of peptides in aqueous solutions analyzed by the reference interaction site model theory, Journal of Chemical Physics 107, 1586–1599CrossRefGoogle Scholar
  182. 181.
    Chialvo, A. A.; Cummings, P. T. (1995a) Comments on “Near Critical Phase Behavior of Dilute Mixtures”, Molecular Physics 84, 41–48CrossRefGoogle Scholar
  183. 182.
    Levelt Sengers, J. M. H. (1991a) Thermodynamics of Solutions Near the Solvent’s Critical Point. In Supercritical Fluid Technology; T. J. Brano and J. F. Ely, Ed.; CRC Press: Boca Raton, pp 1–56.Google Scholar
  184. 183.
    Japas, M. L.; Levelt Sengers, J. M. H. (1989) Gas Solubility and Henry’s Law Near the Solvent’s Critical Point, A1CHE Journal 35, 705–713Google Scholar
  185. 184.
    Chialvo, A. A.; Kalyuzhnyi, Y. V.; Cummings, P. T. (1996) Solvation Thermodynamics of Gas Solubility at Sub- and Near Critical Conditions, AlCHE J. 42, 571–584CrossRefGoogle Scholar
  186. 185.
    Harvey, A. H.; Crovetto, R.; Levelt Sengers, J. M. H. (1990) Limiting vs. Apparent Critical Behavior of Henry’s Constant and K Factors, AICHE Journal 36, 1901–1904CrossRefGoogle Scholar
  187. 186.
    Levelt Sengers, J. M. H. (1991) Solubility Near the Solvent’s Critical Point, Journal of Supercritical Fluids 4, 215–222CrossRefGoogle Scholar
  188. 187.
    Debenedetti, P. G.; Mohamed, R. S. (1989) Attractive, Weakly Attractive and Repulsive Near-Critical Systems, Journal of Chemical Physics 90, 4528–4536CrossRefGoogle Scholar
  189. 188.
    Riess, J. G.; Blanc, M. L. (1978) Perfluoro Compounds as Blood Substitutes, Angew. Chem. 17, 621–640CrossRefGoogle Scholar
  190. 189.
    Schnoy, N.; Pfannkuch, F.; Beisbarth, H. (1979) Fluorocarbons as blood substitutes, observations on the problems and actual development, Anaesthesist 28, 503–510Google Scholar
  191. 190.
    Appenzeller, T. (1991) Fire and Ice under the Deep-Sea Floor, Science 252, 1790–1792CrossRefGoogle Scholar
  192. 191.
    Battino, R.; Clever, H. L. (1966) The Solubility of Gases in Liquids, Chemical Review 66, 395–463CrossRefGoogle Scholar
  193. 192.
    Wilhelm, E.; Battino, R.; Wilcock, R. J. (1977) Low-Pressure Solubility of Gases in Liquid Water, Chemical Review 77, 219–262CrossRefGoogle Scholar
  194. 193.
    Beutier, D.; Reeon, H. (1978) Gas Solubilities Near the Solvent Critical Point, AICHE Journal 24, 1122–1125CrossRefGoogle Scholar
  195. 194.
    Schotte, W. (1985) Solubilities Near the Solvent Critical Point, AICHE Journal 31, 154–157CrossRefGoogle Scholar
  196. 195.
    Wilhelm, W. (1992) Thermodynamics of Solutions, Especially Dilute Solutions of Nonelectrolytes. In Molecular Liquids: New Perspectives in Physics and Chemistry; J. J. C. Teixeira-Dias, Ed.; Kluwer Academic Publishers: pp 175–206.Google Scholar
  197. 196.
    Galobardes, J. F.; Van Hare, D. R.; Rogers, L. B. (1981) Solubility of Sodium Chloride in Dry Steam, Journal of Chemical Engineering Data 26, 363–366CrossRefGoogle Scholar
  198. 197.
    Conway, B. E. (1992) Individual Solvated Ion Properties and Specificity of Ion Adsorption Effects in Processes at Electrodes, Chemical Society Reviews 21, 253–261CrossRefGoogle Scholar
  199. 198.
    Oelkers, E. H.; Helgeson, H. (1991) Calculation of Activity Coefficients and Degrees of Formation of Neutral Ion Pairs in Supercritical Electrolyte Solutions, Geochimica et Cosmochimica Acta 55, 1235–1251CrossRefGoogle Scholar
  200. 199.
    Haar, L.; Gallagher, J. S.; Kell, G. S. (1984) Steam Tables; Hemisphere Publishing Corporation: New York.Google Scholar
  201. 200.
    Levelt Sengers, J. M. H.; Everhart, C. M.; Morrison, G.; Pitzer, K. S. (1986) Thermodynamic anomalies in near-critical aqueous NaCl solutions, Chemical Engineering Communications 47, 315–328CrossRefGoogle Scholar
  202. 201.
    Pitzer, K. S. (1986) Large-Scale Fluctuations and the Critical Behavior of Dilute NaCl in H2O, Journal of Physical Chemistry 90, 1502–1504CrossRefGoogle Scholar
  203. 202.
    Hansen, J. P.; McDonald, I. R. (1986) Theory of Simple Liquids; 2nd. ed.; Academic Press: New York.Google Scholar
  204. 203.
    Kirkwood, J. G. (1935) Statistical Mechanics of Fluid Mixtures, J. Chem. Phys. 3, 300–313CrossRefGoogle Scholar
  205. 204.
    Chialvo, A. A.; Cummings, P. T.; Kalyuzhnyi, Y. V. (1998) Solvation Effects on Kinetic Rate Constant of Reactions in Supercritical Solvents, A1CHE J. 44, 667–680CrossRefGoogle Scholar
  206. 205.
    Chialvo, A. A. In NATO ASI. Supercritical Fluids: Fundamental for Application; Kemer, Antalya, Turkey, 1993b; pp.Google Scholar
  207. 206.
    Ben-Naim, A. (1974) Water and Aqueous Solutions; Plenum Press: New York.Google Scholar
  208. 207.
    O’Connell, J. P. (1971) Thermodynamic Properties of Solutions Based on Correlation Functions, Molecular Physics 20, 27–33CrossRefGoogle Scholar
  209. 208.
    Fluctuation Theory of Mixtures; Matteoli, E.; Mansoori, G. A., Ed.; Taylor and Francis: New York, 1990; Vol. 2.Google Scholar
  210. 209.
    Newman, K. E. (1994) Kirkwood-Buff Solution Theory: Derivation and Applications, Chemical Society Review 23, 31–40CrossRefGoogle Scholar
  211. 210.
    Kusalik, P. G.; Patey, G. N. (1987) The Thermodynamic Properties of Electrolyte Solutions: Some Formal Results, Journal of Chemical Physics 86, 5110–5116CrossRefGoogle Scholar
  212. 211.
    O’Connell, J. P. (1990) Thermodynamic Properties of Mixtures from Fluctuation Theory. In Fluctuation Theory of Mixtures; E. Matteoli and G. A. Mansoori, Ed.; Taylor and Francis: New York, Vol. 2; pp 45–67.Google Scholar
  213. 212.
    Conway, B. E. (1978) The Evaluation and Use of Properties of Individual Ions in Solution, Journal of Solution Chemistry 7, 721–770CrossRefGoogle Scholar
  214. 213.
    Chialvo, A. A. (1993) Accurate Calculation of Excess Thermal, Infinite Dilution, and Related Properties of Liquid Mixtures Via Molecular-Based Simulation, Fluid Phase Equilibria 83, 23–32CrossRefGoogle Scholar
  215. 214.
    Kirkwood, J. G.; Buff, F. P. (1951) The Statistical Mechanical Theory of Solution. I, Journal of Chemical Physics 19, 774–777CrossRefGoogle Scholar
  216. 215.
    Petsche, I. B.; Debenedetti, P. G. (1991) On the Influence of Solute-Solvent Asymmetry upon the Behavior of Dilute Supercritical Mixtures, Journal of Physical Chemistry 95, 386–399CrossRefGoogle Scholar
  217. 216.
    Cummings, P. T. (1994) Introduction to Integral Equation Approximations with Applications to Near-Critical and Supercritical Fluids. In Supercritical Fluids. Fundamentals for Application; E. Kiran and J. M. H. Levelt Sengers, Ed.; Kluwer Academic Publishers: Dordrecht, Vol. E 273; pp 287–312.Google Scholar
  218. 217.
    Guillot, B.; Guissani, Y. (1993) Temperature Dependence of the Solubility of Non-Polar Gases in Liquids, Molecular Physics 79, 53–75CrossRefGoogle Scholar
  219. 218.
    Rickman, J. M.; Phillpot, S. R. (1991) Temperature Dependence of Thermodynamic Quantities from Simulations at a Single Temperature, Physical Review Letters 66, 349–352CrossRefGoogle Scholar
  220. 219.
    Phillpot, S. R.; Rickman, J. M. (1991) Calculation of the Free-Energy of Solids From the Energy-Distribution Function, Journal of Chemical Physics 94, 1454–1464CrossRefGoogle Scholar
  221. 220.
    Guillot, B.; Guissani, Y. (1993) A Computer Simulation Study of the Temperature Dependence of the Hydrophobic Hydration, Journal of Chemical Physics 99, 8075–8094CrossRefGoogle Scholar
  222. 221.
    Bycklyng, E. (1961) The Equation of State of Hard Spheres, Physica 27, 1030–1036CrossRefGoogle Scholar
  223. 222.
    Widom, B. (1963) Some Topics in the Theory of Fluids, Journal of Chemical Physics 39, 2808–2812CrossRefGoogle Scholar
  224. 223.
    Lin, C.-L.; Wood, R. H. (1996) Prediction of the Free Energy of Dilute Aqueous Methane, Ethane, and Propane at Temeperature from 600 to 1200* and Densities from 0 to 1 g cm-3 Using Molecular Dynamics Simulation, Journal of Physical Chemistry 100, 16399–16409CrossRefGoogle Scholar
  225. 224.
    van Gunsteren, W. F.; Berendsen, H. J. C. “GROMOS,” University of Groningen, 1987.Google Scholar
  226. 225.
    Driesner, T. (1998) Molecular Dynamics Simulation Study of Ionic Hydration and Ion Association in Dilute and 1 Molal Aqueous Sodium Chloride Solutions from Ambient to Supercritical Conditions, Geochimica et Cosmochimica Acta. In press.Google Scholar
  227. 226.
    Guàrdia, E.; Rey, R.; Padró, J. A. (1991) Na+_Na+ and C1-_C1- Ion Pairs in Water: Mean Force Potentials by Constrained Molecular Dynamics, Journal of Chemical Physics 95, 2823–2831CrossRefGoogle Scholar
  228. 227.
    Guàrdia, E.; Robinson, A.; Padró, J. A. (1993) Mean Force Potential for the Calcium-Chloride Ion Pair in Water, Journal of Chemical Physics 99, 4229–4230CrossRefGoogle Scholar
  229. 228.
    Gao, J. (1993) Supercritical Hydration of Organic Compounds. The Potential of Mean Force for Benzene Dimer in Supercritical Water, Journal of the American Chemical Society 115, 6893–6895CrossRefGoogle Scholar
  230. 229.
    Gao, J. (1994) Simulation of the Na+Cl- Ion Pair in Supercritical Water, Journal of Physical Chemistry 98, 6049–6053CrossRefGoogle Scholar
  231. 230.
    Chialvo, A. A.; Cummings, P. T.; Cochran, H. D.; Simonson, J. M.; Mesmer, R. E. (1995) Na+_C1- Ion Association in Supercritical Water, Journal of Chemical Physics 103, 9379–9387CrossRefGoogle Scholar
  232. 231.
    Cummings, P. T.; Chialvo, A. A. (1996) Molecular Simulation of Supercritical Water and Aqueous Solutions, Journal of Physics: Condensed Matter 8, 9281–9287CrossRefGoogle Scholar
  233. 232.
    Smith, D. E.; Haymet, A. D. J. (1992) Structure and Dynamics of Water and Aqueous Solutions: The Role of Flexibility, Journal of Chemical Physics 96, 8450–8459CrossRefGoogle Scholar
  234. 233.
    Carter, E. A.; Ciccotti, G.; Hynes, J. T.; Kapral, R. (1989) Constrained Reaction Coordinate Dynamics for the Simulation of Rare Events, Chemical Physics Letters 156, 472–477CrossRefGoogle Scholar
  235. 234.
    Zwanzig, R. W. (1954) High-Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases, Journal of Chemical Physics 22, 1420–1426CrossRefGoogle Scholar
  236. 235.
    Lüdermaen, S.; Schreiber, H.; Abseher, R.; Steinhauser, O. (1996) The Influence of Temperature on Pairwise Hydrophobic Interactions of Methane-like Particles: A Molecular Dynamics Study of Free Energy, Journal of Chemical Physics 104, 286–295CrossRefGoogle Scholar
  237. 236.
    Mezei, M.; Beveridge, D. L. (1986) Free Energy Simulations, Annals New York Academy of Sciences 482, 1–23CrossRefGoogle Scholar
  238. 237.
    Balbueea, P. B.; Johnston, K. P.; Rossky, P. J. (1994) Molecular Simulation of a Chemical Reaction in Supercritical Water, Journal of the American Chemical Society 116, 2689–2690CrossRefGoogle Scholar
  239. 238.
    Balbuena, P. B.; Johnston, K. P.; Rossky, P. J. (1995) Computer Simulation Study of an SN2 Reaction in Supercritical Water, Journal of Physical Chemistry 99, 1554–1565CrossRefGoogle Scholar
  240. 239.
    Bennett, G. E.; Rossky, P. J.; Johnston, K. P. (1995) Continuum Electrostatic Model for an SN2 Reaction in Supercritical Water, Journal of Physical Chemistry 99, 16136–16143CrossRefGoogle Scholar
  241. 240.
    Quist, A. S.; Marshall, W. L. (1968) Electrical Conductances of Aqueous Sodium Chloride Solutions from 0 to 800 Degrees and at Pressures to 4000Bars, Journal of Physical Chemistry 72, 684–703CrossRefGoogle Scholar
  242. 241.
    Ho, P. C.; Palmer, D. A.; Mesmer, R. E. (1994) Electrical Conductivity Measurements of Aqueous Sodium Chloride Solutions to 600 deg C and 300 MPa, Journal of Solution Chemistry 23, 997–1018CrossRefGoogle Scholar
  243. 242.
    Zimmerman, G. H.; Graszkiewicz, M. S.; Wood, R. H. (1995) New Apparatus for Conductance Measurements at High Temperature: Conductance of Aqueous Solutions of LiCl, NaCl, NaBr, and CsBr at 28MPa and Water Densities from 700 to 260 kg/m3, Journal of Physical Chemistry 99, 11612–11625CrossRefGoogle Scholar
  244. 243.
    Simonson, J. M.; Palmer, D. A. (1993) Liquid-Vapor Partitioning of HCL(aq) to 350 °C, Geochimica et Cosmochimica Acta 57, 1–8CrossRefGoogle Scholar
  245. 244.
    Holmes, H. F.; Mesmer, R. E. (1983) Isopiestic Studies of Aqueous Solutions at Elevated Temperatures. VII MgSO4 and NiSO4, Journal of Chemical Thermodynamics 15, 709–719CrossRefGoogle Scholar
  246. 245.
    Holmes, H. F.; Busey, R. H.; Simonson, J. M.; Mesmer, R. E.; Archer, D. G.; Wood, R. H. (1987) Journal of Chemical Thermodynamics 19, 863–890CrossRefGoogle Scholar
  247. 246.
    Bruno, T. J.; Ely, J. F. (1991) Supercritical Fluid Technology; CRC Press: Boca Raton.Google Scholar
  248. 247.
    Pettitt, B. M.; Rossky, P. J. (1986) Alkali Halides in Water: Ion-solvent Correlations and Ion-ion Potentials of Mean Force at Infinite Dilution, Journal of Chemical Physics 84, 5836–5844CrossRefGoogle Scholar
  249. 248.
    Tosi, M. P.; Fumi, F. G. (1964) Ionic Sizes and Bom Repulsive Parameters in the Na-Cl-type Alkali-Halides. II. The Generalized Huggins-Mayer Form, Journal of Physics and Chemistry of Solids 25, 45–52CrossRefGoogle Scholar
  250. 249.
    Fumi, F. G.; Tosi, M. P. (1964) Ionic Sizes and Bom Repulsive Parameters in the Na-Cl-type Alkali-Halides. I. The Huggins-Mayer and Pauling Forms, Journal of Physics and Chemistry of Solids 25, 31–43CrossRefGoogle Scholar
  251. 250.
    Cui, S. T.; Harris, J. G. (1995) Solubility of Sodium Chloride in Supercritical Water: A Molecular Dynamics Study, Journal of Physical Chemistry 99, 2900–2906CrossRefGoogle Scholar
  252. 251.
    Armellini, F. J.; Tester, J. W. (1993) Solubility of Sodium Chloride and Sulfate in Sub-and Supercritical Water Vapor from 450–550°C and 100–250 bar, Fluid Phase Equilibria 84, 123–142CrossRefGoogle Scholar
  253. 252.
    Oelkers, E. H.; Helgeson, H. C. (1993) Multiple Ion Association in Supercritical Aqueous Solutions of Single Electrolytes, Science 261, 888–891CrossRefGoogle Scholar
  254. 253.
    Eigen, M.; Tamm, K. (1962) Schallabsortion in Elektrolytlösungen als Folge chemischer Relaxation, Z. Elektrochem. 66, 93–106Google Scholar
  255. 254.
    Guàrdia, E.; Rey, R.; Padro, J. A. (1991) Potential of Mean Force by Constrained Molecular Dynamics: A Sodium Chloride Ion-pair in Water, Chemical Physics 155, 187–195CrossRefGoogle Scholar
  256. 255.
    Ciccotti, G.; Ferrario, M.; Hynes, J. T.; Kapral, R. (1989) Constrained Molecular Dynamics and the Mean Potential for an Ion Pair in a Polar Solvent, Chemical Physics 129, 241–251CrossRefGoogle Scholar
  257. 256.
    Chialvo, A. A.; Cummings, P. T.; Simonson, J. M.; Mesmer, R. E. (1997) Molecular Simulation Study of Speciation in Supercritical Aqueous NaCl Solutions, Journal of Molecular Liquids 73–74, 361–372CrossRefGoogle Scholar
  258. 257.
    Dang, L. X.; Rice, J. E.; Kollman, P. A. (1990) The Effect of Water Models on the Interaction of the Sodium-Chloride Ion Pair in Water: Molecular Dynamics Simulation, Journal of Chemical Physics 93, 7528–7529CrossRefGoogle Scholar
  259. 258.
    Pfund, D. M.; Darab, J. G.; Fulton, J. L.; Ma, Y. (1994) An XAFS Study of Strontium Ions and Krypton in Supercritical Water, Journal of Physical Chemistry 98, 13102–13107CrossRefGoogle Scholar
  260. 259.
    Fulton, J. L.; Pfund, D. M.; Wallen, S. L.; Newville, M.; Stem, E. A.; Ma, Y. (1996) Journal of Chemical Physics 105, 2161–2166CrossRefGoogle Scholar
  261. 260.
    Wallen, S. L.; Palmer, B. J.; Fulton, J. L. (1998) The Ion Pairing and Hydratioe Structure of Ni2+ in Supercritical Water at 425°C Determined by X-ray Absorption Fine Structure and Molecular Dynamics Studies, Journal of Chemical Physics 108, 4039–4046CrossRefGoogle Scholar
  262. 261.
    Ohtaki, H.; Radeai, T. (1993) Structure and Dynamics of Hydrated Ions, Chemical Review 93, 1157–1204CrossRefGoogle Scholar
  263. 262.
    Enderby, J. E.; Neilson, G. W. (1981) The Structure of Electrolyte Solutions, Reports on Progress in Physics 44, 593–653CrossRefGoogle Scholar
  264. 263.
    Palmer, B. J.; Pfund, D. M.; Fulton, J. L. (1996) Direct Modeling of EXAFS Spectra from Molecular Dynamics Simulations, Journal of Physical Chemistry 100, 13393–13398CrossRefGoogle Scholar
  265. 264.
    Chialvo, A. A.; Cummings, P. T.; Simonson, J. M.; Mesmer, R. E. (1999) Solvation in High-Temperature Electrolyte Solutions. I. Hydration Shell Behavior from Molecular Simulation, Journal of Chemical Physics 110, 1064–1074CrossRefGoogle Scholar
  266. 265.
    Wood, R. H.; Quint, J. R.; Grolier, J.-P. E. (1981) Thermodynamics of the Charged Hard Sphere in a Compressible Dielectric Fluid. A Modification of the Bom Equation to Include the Compressibility of the Solvent, Journal of Physical Chemistry 85, 3944–3949CrossRefGoogle Scholar
  267. 266.
    Bockris, J. O. M.; Reddy, A. K. N. (1970) Modem Electrochemistry; Plenum Press: New York, Vol. 1.Google Scholar
  268. 267.
    Marcus, Y. (1977) Introduction to Liquid State Chemistry; John Wiley & Son: London.Google Scholar
  269. 268.
    Burgess, J. (1978) Metal Ions in Solution; Ellis Horwood Limited: Chichester.Google Scholar
  270. 269.
    Tucker, S. C.; Gibbons, E. M. (1994) Theoretical Models of Anisole Hydrolysis in Supercritical Water. In Structure and Reactivity in Aqueous Solution; D. G. Trahlar and C. J. Cramer, Ed.; American Chemical Society: Washington, Vol. 568; pp 196–211.Google Scholar
  271. 270.
    Luo, H.; Tucker, S. C. (1996) A Continuum Solvation Model Including Electrostriction: Application to the Anisole Hydrolysis Reaction in Supercritical Water, Journal of Physical Chemistry 100, 11165–11174CrossRefGoogle Scholar
  272. 271.
    Leo, H.; Tucker, S. C. (1995) Compressible Continuum Solvatioe Model for Molecular Solutes, Journal of the American Chemical Society 117, 11359–11360Google Scholar
  273. 272.
    Luo, H.; Tucker, S. C. (1997) A Case against Large Cluster-Induced Nonequilibrium Solvent Effects in Supercritical Water, Theoretical Chemical Accounts 96, 84–91CrossRefGoogle Scholar
  274. 273.
    Luo, H.; Tucker, S. C. (1997) A Compressible Continuum Model Study of the Chloride plus Methyl Chloride Reaction in Supercritical Water, Journal of Physical Chemistry B 101, 1063–1071CrossRefGoogle Scholar
  275. 274.
    Hynes, J. T. (1985) The Theory of Reactions in Solution. In Theory of Chemical Reaction Dynamics; M. Baer, Ed.; CRC Press: Boca Raton, Vol. IV; pp 171–234.Google Scholar
  276. 275.
    Eckert, C. A. (1972) High Pressure Kinetics in Solution, Annual Review of Physical Chemistry 23, 239–264CrossRefGoogle Scholar
  277. 276.
    O’Connell, J. P.; Sharygin, A. V.; Wood, R. H. (1996) Infinitely Dilution Partial Molar Volumes of Aqueous Solutes over Wide Ranges of Conditions, Industrial & Engineering Chemistry Research 35, 2808–2812CrossRefGoogle Scholar
  278. 277.
    Sedlbauer, J.; Yezdimer, E. M.; Wood, R. H. (1998) Partial Molar Volumes at Infinite Dilution in Aqueous Solutions of NaCl, LiCl, NaBr, and CsBr at Temperatures from 550K to 725K, Journal of Chemical Thermodynamics 30, 342CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • A. A. Chialvo
    • 1
  • P. T. Cummings
    • 2
  1. 1.Department of Chemical EngineeringUniversity of TennesseeKnoxvilleUSA
  2. 2.Chemical Technology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations