Skip to main content

Solution Chemistry in Supercritical Water: Spectroscopy and Simulation

  • Chapter
Supercritical Fluids

Part of the book series: NATO Science Series ((NSSE,volume 366))

Abstract

The Interest in understanding chemical phenomena in aqueous solutions at elevated temperatures and pressures has grown significantly during the last decade[1–9] Practical applications include hydrothermal oxidation of organic wastes, hydrothermal growth of crystals, spraying of ceramics, and hydrothermal synthesis reactions, e.g., the commercial hydrolysis of chlorobenzene to produce phenol and dibenzofuran. Because water at high temperatures is highly compressible, small changes in temperature and pressure lead to large changes in the density and the dielectric constant which produce large variations in ion solvation and acid-base equilibria. Fundamental chemical properties, which are well-known in aqueous chemistry at 298 K, are much less available for supercritical water (SCW) (T c = 647.13 K, p c = 0.322 g/cm3, P c = 220.55 bar) solutions. Examples of such properties include ion solvation and acid-base equilibria, which play a central role in solvent effects on chemical reaction rate and equilibrium constants, phase equilibria, and corrosion. In this article these properties are discussed on the basis of in-situ spectroscopic measurement and computer simulation of ion solvation and chemical equilibria. The structure of water about ions is also discussed elsewhere in this book [10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shaw, R. W., Brill, T. B., Clifford, A. A., Eckert, C. A. and Franck, E. U. (1991) Supercritical Water: A Medium for Chemistry, Chenu and Eng. News 69, 26.

    CAS  Google Scholar 

  2. Tester, J. W., Holgate, H. R., Annellini, F. J., Webley, P. A., Killilea, W. R., Hong, G. T. and Bamer, H. E. (1993) in Emerging Technologies in Hazardous Waste Management III, eds. D. W. Tedder and F. G. Pohlaed, Am. Chem. Soc, Washington, pp. 35–76.

    Chapter  Google Scholar 

  3. Gloyna, E. F. and Li, L. (1993) Supercritical Water Oxidation: An Engineering Update, Waste Management 13, 379–394.

    Article  CAS  Google Scholar 

  4. Balbuena, P. B., Flanagie, L. W., Johnston, K. P. and Rossky, P. J. (1995) in Physical Chemistry of Aqueous Systems: Meeting the Needs of Industry, eds. H. J. White, J. V. Sengers, D. B. Neumann and J. C. Bellows, Begell House, New York, pp. 595–601.

    Google Scholar 

  5. Johnston, K. P., Balbuena, P. B., Xiang, T. and Rossky, P. J. (1995) Simulation and Spectroscopy of Solvation in Water from Ambient to Supercritical Conditions, Am. Chem. Soc. Symp. Series 608, 77–92.

    CAS  Google Scholar 

  6. Savage, P. E., Gopalan, S., Mizan, T. I., Martino, C. J. and Brock, E. E. (1995) Reactions at Supercritical Conditions: Applications and Fundamentals, AIChE J. 41, 1723.

    Article  CAS  Google Scholar 

  7. Levelt-Sengers, J. M. H. (1999) in Supercritical Fluids- Fundamentals and Applications, ed. E. Kiran, Kluwer, Dordrecht.

    Google Scholar 

  8. Shaw, R. W. and Dahmen, N. (1999) in Supercritical Fluids- Fundamentals and Applications, ed. E. Kiran, Kluwer, Dordrecht.

    Google Scholar 

  9. Savage, P. E. (1999) Organic Chemical Reactions in Supercritical Water, Chemical Reviews 99, 603–622.

    Article  CAS  Google Scholar 

  10. Chialvo, A. A., Cummings, P. T. and Cummings, P. (1999) in Supercritical Fluids-Fundamentals and Applications, Kluwer, Dordrecht.

    Google Scholar 

  11. Chen, X., Izatt, R. M. and Oscarson, J. L. (1994) Thermodynamic Data for Ligand Interaction with Proton and Metal Ions in Aqueous Solutions at High Temperatures, Chem. Rev. 94, 467–517.

    Article  CAS  Google Scholar 

  12. Xiang, T. and Johnston, K. P. (1994) Acid-Base Behavior of Organic Compounds in Supercritical Water, J. Phys. Chem. 98, 7915.

    Article  CAS  Google Scholar 

  13. Wofford, W. T., Gloyna, E. F. and Johnston, K. P. (1998) Boric Acid Equilibria in Near-Critical and Supercritical Water, Ind. Eng. Chem. Res. 37, 2045–51.

    Article  CAS  Google Scholar 

  14. Soper, A. K. (1996) Bridge over troubled water: the apparent discrepancy between simulated and experimental non-ambient water structure, J. Phys.: Condens. Matter 8, 9263–67.

    Article  CAS  Google Scholar 

  15. Jedlovszky, P., Brodholt, J. P., Bruni, F., Ricci, M. A., Soper, A. K. and Vallauri, R. (1998) Analysis of the hydrogen-bonded structure of water from ambient to supercritical conditions, J. Chem. Phys. 108, 8528–40.

    Article  CAS  Google Scholar 

  16. Bellissent-Funel, M.-C., Tassaing, T., Zhao, H., Beysens, D., Guillot, B. and Guissani, Y. (1997) The structure of supercritical heavy water as studied by neutron diffraction, J. Chem. Phys. 107, 2942–49.

    Article  CAS  Google Scholar 

  17. de Jong, P. H. K., Neilson, G. W. and Bellissent-Funel, M.-C. (1996) Hydration of Ni2+ and Cl- in a concentrated nickel chloride solution at 100° C and 300° C, J. Chem. Phys. 105, 5155–59.

    Article  Google Scholar 

  18. Ohtaki, H., Radnai, T. and Yamaguchi, T. (1997) Structure of water under subcritical and supercritical conditions studied by solution x-ray diffraction, Chem. Soc. Rev. 26, 41–51.

    Article  CAS  Google Scholar 

  19. Matubayasi, N., Wakai, C. and Nakahara, M. (1997) NMR study of water structure in super-and subcritical conditions, Phys. Rev. Letters 78, 2573–76.

    Article  CAS  Google Scholar 

  20. Tucker, S. C. and G. Goodyear (1999) in Supercritical Fluids- Fundamentals and Applications, ed. E. Kiran, Kluwer, Dordrecht.

    Google Scholar 

  21. Allen, M. P. and Tildesley, D. J. (1987) Computer Simulation of Liquids, Oxford University Press, New York.

    Google Scholar 

  22. Buback, M. and Crerar, D. (1987) in Hydrothermal Experimental Techniques, eds. U. G. and H. Barnes, Wiley, New York.

    Google Scholar 

  23. Matubayasi, N., Wakai, C. and Nakahara, M. (1997) Structural study of supercritical water. I. Nuclear magnetic resonance spectroscopy, J. Chem. Phys. 107, 9133–40.

    Article  CAS  Google Scholar 

  24. Gorbaty, Y. E. and Kalinichev, A. G. (1995) Hydrogen Bonding in Supercritical Water. 1. Experimental Results, J. Phys. Chem. 99, 5336–40.

    Article  CAS  Google Scholar 

  25. Gupta, R. B., Panayiotou, C. G., Sanchez, I. C. and Johnston, K. P. (1992) Theory of Hydrogen Bonding in Supercritical Fluids, AIChE J. 38, 1243.

    Article  CAS  Google Scholar 

  26. Wallen, S. L., Palmer, B. J. and Fulton, J. L. (1998) The ion pairing and hydration structure of Ni2+ in supercritical water at 425°C determined by x-ray absorption fine structure and molecular dynamics studies, J. Chem. Phys. 108, 4039–4046.

    Article  CAS  Google Scholar 

  27. Niemeyer, E. D. and Bright, F. (1997) On the Local Environment Surrounding Pyrene in Near and Supercritical Water, Appl. Spectrosc. 51, 1547–1553.

    Article  CAS  Google Scholar 

  28. Ikushima, Y., Hatakeda, K., Saito, N. and Arais M. (1998) An in situ Raman spectroscopy study of subcritical and supercritical water: The peculiarity of hydrogen bonding near the critical point, J. Chem. Phys. 108, 5855–5860.

    Google Scholar 

  29. Spohn, P. D. and Brill, T. B. (1989) Raman Spectroscopy of the Species in Concentrated Aqueous Solutions of Zn(NO3)2, Ca(NO3)2, Cd(NO3)2, LiNO3, and NaNO3 up to 450°C and 30 MPa, J. Phys. Chem. 93, 6224–6231.

    Article  CAS  Google Scholar 

  30. Schoppelrei, J. W. and Brill, T. B. (1997) Spectroscopy of Hydrothermal Reactions. 7. Kinetics of Aqueous [NH3OH]NO3 at 463–523 K and 27.5 MPa by Infrared Spectroscopy, J. Phys. Chem, A. 101, 8593–8596.

    Article  CAS  Google Scholar 

  31. Rice, S. F., Steeper, R. R. and Aiken, J. D. (1998) Water Density Effects on Homogeneous Water-Gas Shift Reaction Kinetics, J. Phys. Chem. A 102, 2673–2678.

    Article  CAS  Google Scholar 

  32. Ryan, E. T., Xiang, T., Johnston, K. P. and Fox, M. A. (1996) Excited-State Proton Transfer Reactions in Subcritical and Supercritical Water, J. Phys. Chem. 100, 9395–9402.

    Article  CAS  Google Scholar 

  33. Schoppelrei, J. W., Kieke, M. L. and Brill, T. B. (1996) Spectroscopy of Hydrothermal Reactions. 2. Reactions and Kinetic Parameters of [NH3OH]NO3 and Equilibria of (NH4)2 CO3 Determined with a Flow Cell and FT Raman Spectroscopy, J. Phys. Chem. 100, 7463–70.

    Article  CAS  Google Scholar 

  34. Seward, T. M. (1984) The formation of lead(II) chloride complexes to 300°C: a spectrophotometric study, Geochim. Cosmochim. Acta 48, 121.

    Article  CAS  Google Scholar 

  35. Heinrich, C. A. and Seward, T. M. (1990) A spectrophotometric study of aqueous iron(II) chloride complexing from 25 to 200°C, Geochim. Cosmochim. Acta 54, 2207.

    Article  CAS  Google Scholar 

  36. Bennett, G. E. and Johnston, K. P. (1994) UV-visible Absorbance Spectroscopy of organic Probes in Supercritical Water, J. Phys. Chem. 98, 441.

    Article  CAS  Google Scholar 

  37. Chlistunoff, J. B. and Johnston, K. P. (1998) UV-Vis Spectroscopic Determination of the Dissociation Constant of Bichromate from 160°C to 400°C, J. Phys. Chem. B. 102, 3933.

    Google Scholar 

  38. Mesmer, R. E., Palmer, D. A. and Simonson, J. M. (1991) in Activity Coefficients in Electrolyte Solutions,2nd Edition, ed. K. S. Pitzer, CRC Press, Boca Raton, pp. 491.

    Google Scholar 

  39. Mesmer, R. E., Marshall, W. L., Palmer, D. A., Simoeson, J. M. and Holmes, H. F. (1988) Thermodynamics of Aqueous Association and lonization Reactions at High Temperatures and Pressure, J. Solution Chem. 17, 699–718.

    Article  CAS  Google Scholar 

  40. Balbuena, P. B., Johnston, K. P. and Rossky, P. J. (1996) Molecular Dynamics Simulation of Electrolyte Solutions in Ambient and Supercritical Water: II. Relative Acidity of HCl, J. Phys. Chem. 100, 2716–2722.

    Article  CAS  Google Scholar 

  41. Xiang, T. and Johnston, K. P. (1997) Acid-Base Behavior in Supercritical Water: β-Naphthoic Acid-Ammonia Equilibrium, J. Solution Chemistry 26, 13–30.

    CAS  Google Scholar 

  42. Ramayya, S. and Antal, M. J., Jr (1990) Influence of pressure on the acid-catalysed rate constant for 1-propanol dehydration in supercritical water, J. Am. Chem. Soc. 112, 1927–1931.

    Article  Google Scholar 

  43. Ulmer, G. C. and Barnes, H. L. (1987) Hydrothermal Experimental Techniques, Wiley-Interscience, New York.

    Google Scholar 

  44. Dell’Orco, P. C., Foy, B. R., Le, L., Ely, J., Patterson, K. and Buelow, S. J. (1995) Hydrothermal Oxidation of Organic Compounds by Nitrate and Nitrite, ACS Symp. Ser. 608, 179.

    Article  Google Scholar 

  45. Palmer, D. A., Wesolowski, D. and Mesmer, R. E. (1987) A Potentiometric investigation of the hydrolysis of chromate(VI) ion in NaCl Media to 175°C, J. Solution Chem. 16, 443–463.

    Article  CAS  Google Scholar 

  46. Straatsma, T. P. and McCammon, J. A. (1992) Computational Alchemy, Ann. Rev. Phys. Chem. 43, 407–35.

    Article  CAS  Google Scholar 

  47. Flanagin, L. W., Balbuena, P. B., Johnston, K. P. and Rossky, P. J. (1995) Temperature and Density Effects on an SN2 Reaction in Supercritical Water, J. Phys. Chem 99, 5196.

    Article  CAS  Google Scholar 

  48. Bennett, G. E., Rossky, P. J. and Johnston, K. P. (1995) Continuum Electrostatics Model for an SN2 Reaction in Supercritical Water, J. Phys. Chem. 99, 16136–16143.

    Article  CAS  Google Scholar 

  49. Balbuena, P. B., Johnston, K. P. and Rossky, P. J. (1996) Molecular Dynamics Simulation of Electrolyte Solutions in Ambient and Supercritical Water: I. Ion Solvation, J. Phys. Chem. 100, 2706–2715.

    Article  CAS  Google Scholar 

  50. Johnston, K. P., Bennett, G. E., Balbuena, P. B. and Rossky, P. J. (1996) Continuum Electrostatic Model for Ion Solvation and Relative Acidity of HCl in Supercritical Water, J. Am. Chem. Soc. 118, 6746–6752.

    Article  CAS  Google Scholar 

  51. Flanagin, L. W., Balbuena, P. B., Johnston, K. P. and Rossky, P. J. (1997) Ion Solvation in Supercritical Water Based on an Adsorption Analogy, J. Phys. Chem. 101, 7798–8005.

    Google Scholar 

  52. Berendsen, H. J. C., Grigera, J. R. and Straatsma, T. P. (1987) The missing term in effective pair potentials, J. Phys. Chem. 91, 6269–71.

    Article  CAS  Google Scholar 

  53. Dang, L. X. (1998) Importance of Polarization Effects in Modeling the Hydrogen Bond in Water Using Classical Molecular Dynamics Techniques, J. Phys. Chem. B. 102, 620–24.

    Article  CAS  Google Scholar 

  54. de Pablo, J. J., Prausnitz, J. M., Strauch, H. J. and Cummiogs, P. T. (1990) Molecular simulation of water along the liquid-vapor coexistence curve from 25°C to the critical point, J. Chem. Phys. 93, 7355–7359.

    Article  Google Scholar 

  55. Guissani, Y. and Guillot, B. (1993) A computer simulation study of the liquid-vapor coexistence curve of water, J. Chem. Phys. 98, 8221–8235.

    Article  CAS  Google Scholar 

  56. Guillot, B. and Guissani, Y. (1993) A computer simulation study of the temperature dependence of the hydrophobic hydration, J. Chem. Phys. 99, 8075.

    Article  CAS  Google Scholar 

  57. Del Buono, G. S., Rossky, P. J. and Schnitker, J. (1991) Model dependence of quantum isotope effects in liquid water, J. Chem. Phys. 95, 3728–37.

    Article  Google Scholar 

  58. Gilson, M. K. and Sharp, K. A. (1987) Calculating the Electrostatic Potential of Molecules in Solution: Method and Error Assesment, J. Comput. Chem. 9, 327–335.

    Article  Google Scholar 

  59. Davis, M. E. and McCammon, J. A. (1990) Electrostatics in biomolecular structure and dynamics, Chem. Rev. 90, 509–21.

    Article  CAS  Google Scholar 

  60. Luo, H. and Tucker, S. C. (1995) Compressible Continuum Solvation Model for Molecular Solutes, J. Am. Chem. Soc. 117, 11359–11360.

    Article  CAS  Google Scholar 

  61. Luo, H. and Tucker, S. C. (1997) A Compressible Continuum Model Study of the Chloride plus Methyl Chloride Reaction in Supercritical Water, J. Phys. Chem. B, 1063–71.

    Google Scholar 

  62. Kajimoto, O., Futakami, M, Kobayashi, T. and Yamasaki, K. (1988) Charge-Transfer-State Formation in Supercritical Fluid: (N, N-Dimethylamino) benzonitrile in CF3H., 92, 1347.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Johnston, K.P., Rossky, P.J. (2000). Solution Chemistry in Supercritical Water: Spectroscopy and Simulation. In: Kiran, E., Debenedetti, P.G., Peters, C.J. (eds) Supercritical Fluids. NATO Science Series, vol 366. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3929-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3929-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6236-4

  • Online ISBN: 978-94-011-3929-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics