Solution Chemistry in Supercritical Water: Spectroscopy and Simulation

  • Keith P. Johnston
  • Peter J. Rossky
Part of the NATO Science Series book series (NSSE, volume 366)


The Interest in understanding chemical phenomena in aqueous solutions at elevated temperatures and pressures has grown significantly during the last decade[1–9] Practical applications include hydrothermal oxidation of organic wastes, hydrothermal growth of crystals, spraying of ceramics, and hydrothermal synthesis reactions, e.g., the commercial hydrolysis of chlorobenzene to produce phenol and dibenzofuran. Because water at high temperatures is highly compressible, small changes in temperature and pressure lead to large changes in the density and the dielectric constant which produce large variations in ion solvation and acid-base equilibria. Fundamental chemical properties, which are well-known in aqueous chemistry at 298 K, are much less available for supercritical water (SCW) (T c = 647.13 K, p c = 0.322 g/cm3, P c = 220.55 bar) solutions. Examples of such properties include ion solvation and acid-base equilibria, which play a central role in solvent effects on chemical reaction rate and equilibrium constants, phase equilibria, and corrosion. In this article these properties are discussed on the basis of in-situ spectroscopic measurement and computer simulation of ion solvation and chemical equilibria. The structure of water about ions is also discussed elsewhere in this book [10].


Supercritical Fluid Supercritical Water Solvation Free Energy Free Energy Difference Hydration Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shaw, R. W., Brill, T. B., Clifford, A. A., Eckert, C. A. and Franck, E. U. (1991) Supercritical Water: A Medium for Chemistry, Chenu and Eng. News 69, 26.Google Scholar
  2. 2.
    Tester, J. W., Holgate, H. R., Annellini, F. J., Webley, P. A., Killilea, W. R., Hong, G. T. and Bamer, H. E. (1993) in Emerging Technologies in Hazardous Waste Management III, eds. D. W. Tedder and F. G. Pohlaed, Am. Chem. Soc, Washington, pp. 35–76.CrossRefGoogle Scholar
  3. 3.
    Gloyna, E. F. and Li, L. (1993) Supercritical Water Oxidation: An Engineering Update, Waste Management 13, 379–394.CrossRefGoogle Scholar
  4. 4.
    Balbuena, P. B., Flanagie, L. W., Johnston, K. P. and Rossky, P. J. (1995) in Physical Chemistry of Aqueous Systems: Meeting the Needs of Industry, eds. H. J. White, J. V. Sengers, D. B. Neumann and J. C. Bellows, Begell House, New York, pp. 595–601.Google Scholar
  5. 5.
    Johnston, K. P., Balbuena, P. B., Xiang, T. and Rossky, P. J. (1995) Simulation and Spectroscopy of Solvation in Water from Ambient to Supercritical Conditions, Am. Chem. Soc. Symp. Series 608, 77–92.Google Scholar
  6. 6.
    Savage, P. E., Gopalan, S., Mizan, T. I., Martino, C. J. and Brock, E. E. (1995) Reactions at Supercritical Conditions: Applications and Fundamentals, AIChE J. 41, 1723.CrossRefGoogle Scholar
  7. 7.
    Levelt-Sengers, J. M. H. (1999) in Supercritical Fluids- Fundamentals and Applications, ed. E. Kiran, Kluwer, Dordrecht.Google Scholar
  8. 8.
    Shaw, R. W. and Dahmen, N. (1999) in Supercritical Fluids- Fundamentals and Applications, ed. E. Kiran, Kluwer, Dordrecht.Google Scholar
  9. 9.
    Savage, P. E. (1999) Organic Chemical Reactions in Supercritical Water, Chemical Reviews 99, 603–622.CrossRefGoogle Scholar
  10. 10.
    Chialvo, A. A., Cummings, P. T. and Cummings, P. (1999) in Supercritical Fluids-Fundamentals and Applications, Kluwer, Dordrecht.Google Scholar
  11. 11.
    Chen, X., Izatt, R. M. and Oscarson, J. L. (1994) Thermodynamic Data for Ligand Interaction with Proton and Metal Ions in Aqueous Solutions at High Temperatures, Chem. Rev. 94, 467–517.CrossRefGoogle Scholar
  12. 12.
    Xiang, T. and Johnston, K. P. (1994) Acid-Base Behavior of Organic Compounds in Supercritical Water, J. Phys. Chem. 98, 7915.CrossRefGoogle Scholar
  13. 13.
    Wofford, W. T., Gloyna, E. F. and Johnston, K. P. (1998) Boric Acid Equilibria in Near-Critical and Supercritical Water, Ind. Eng. Chem. Res. 37, 2045–51.CrossRefGoogle Scholar
  14. 14.
    Soper, A. K. (1996) Bridge over troubled water: the apparent discrepancy between simulated and experimental non-ambient water structure, J. Phys.: Condens. Matter 8, 9263–67.CrossRefGoogle Scholar
  15. 15.
    Jedlovszky, P., Brodholt, J. P., Bruni, F., Ricci, M. A., Soper, A. K. and Vallauri, R. (1998) Analysis of the hydrogen-bonded structure of water from ambient to supercritical conditions, J. Chem. Phys. 108, 8528–40.CrossRefGoogle Scholar
  16. 16.
    Bellissent-Funel, M.-C., Tassaing, T., Zhao, H., Beysens, D., Guillot, B. and Guissani, Y. (1997) The structure of supercritical heavy water as studied by neutron diffraction, J. Chem. Phys. 107, 2942–49.CrossRefGoogle Scholar
  17. 17.
    de Jong, P. H. K., Neilson, G. W. and Bellissent-Funel, M.-C. (1996) Hydration of Ni2+ and Cl- in a concentrated nickel chloride solution at 100° C and 300° C, J. Chem. Phys. 105, 5155–59.CrossRefGoogle Scholar
  18. 18.
    Ohtaki, H., Radnai, T. and Yamaguchi, T. (1997) Structure of water under subcritical and supercritical conditions studied by solution x-ray diffraction, Chem. Soc. Rev. 26, 41–51.CrossRefGoogle Scholar
  19. 19.
    Matubayasi, N., Wakai, C. and Nakahara, M. (1997) NMR study of water structure in super-and subcritical conditions, Phys. Rev. Letters 78, 2573–76.CrossRefGoogle Scholar
  20. 20.
    Tucker, S. C. and G. Goodyear (1999) in Supercritical Fluids- Fundamentals and Applications, ed. E. Kiran, Kluwer, Dordrecht.Google Scholar
  21. 21.
    Allen, M. P. and Tildesley, D. J. (1987) Computer Simulation of Liquids, Oxford University Press, New York.Google Scholar
  22. 22.
    Buback, M. and Crerar, D. (1987) in Hydrothermal Experimental Techniques, eds. U. G. and H. Barnes, Wiley, New York.Google Scholar
  23. 23.
    Matubayasi, N., Wakai, C. and Nakahara, M. (1997) Structural study of supercritical water. I. Nuclear magnetic resonance spectroscopy, J. Chem. Phys. 107, 9133–40.CrossRefGoogle Scholar
  24. 24.
    Gorbaty, Y. E. and Kalinichev, A. G. (1995) Hydrogen Bonding in Supercritical Water. 1. Experimental Results, J. Phys. Chem. 99, 5336–40.CrossRefGoogle Scholar
  25. 25.
    Gupta, R. B., Panayiotou, C. G., Sanchez, I. C. and Johnston, K. P. (1992) Theory of Hydrogen Bonding in Supercritical Fluids, AIChE J. 38, 1243.CrossRefGoogle Scholar
  26. 26.
    Wallen, S. L., Palmer, B. J. and Fulton, J. L. (1998) The ion pairing and hydration structure of Ni2+ in supercritical water at 425°C determined by x-ray absorption fine structure and molecular dynamics studies, J. Chem. Phys. 108, 4039–4046.CrossRefGoogle Scholar
  27. 27.
    Niemeyer, E. D. and Bright, F. (1997) On the Local Environment Surrounding Pyrene in Near and Supercritical Water, Appl. Spectrosc. 51, 1547–1553.CrossRefGoogle Scholar
  28. 28.
    Ikushima, Y., Hatakeda, K., Saito, N. and Arais M. (1998) An in situ Raman spectroscopy study of subcritical and supercritical water: The peculiarity of hydrogen bonding near the critical point, J. Chem. Phys. 108, 5855–5860.Google Scholar
  29. 29.
    Spohn, P. D. and Brill, T. B. (1989) Raman Spectroscopy of the Species in Concentrated Aqueous Solutions of Zn(NO3)2, Ca(NO3)2, Cd(NO3)2, LiNO3, and NaNO3 up to 450°C and 30 MPa, J. Phys. Chem. 93, 6224–6231.CrossRefGoogle Scholar
  30. 30.
    Schoppelrei, J. W. and Brill, T. B. (1997) Spectroscopy of Hydrothermal Reactions. 7. Kinetics of Aqueous [NH3OH]NO3 at 463–523 K and 27.5 MPa by Infrared Spectroscopy, J. Phys. Chem, A. 101, 8593–8596.CrossRefGoogle Scholar
  31. 31.
    Rice, S. F., Steeper, R. R. and Aiken, J. D. (1998) Water Density Effects on Homogeneous Water-Gas Shift Reaction Kinetics, J. Phys. Chem. A 102, 2673–2678.CrossRefGoogle Scholar
  32. 32.
    Ryan, E. T., Xiang, T., Johnston, K. P. and Fox, M. A. (1996) Excited-State Proton Transfer Reactions in Subcritical and Supercritical Water, J. Phys. Chem. 100, 9395–9402.CrossRefGoogle Scholar
  33. 33.
    Schoppelrei, J. W., Kieke, M. L. and Brill, T. B. (1996) Spectroscopy of Hydrothermal Reactions. 2. Reactions and Kinetic Parameters of [NH3OH]NO3 and Equilibria of (NH4)2 CO3 Determined with a Flow Cell and FT Raman Spectroscopy, J. Phys. Chem. 100, 7463–70.CrossRefGoogle Scholar
  34. 34.
    Seward, T. M. (1984) The formation of lead(II) chloride complexes to 300°C: a spectrophotometric study, Geochim. Cosmochim. Acta 48, 121.CrossRefGoogle Scholar
  35. 35.
    Heinrich, C. A. and Seward, T. M. (1990) A spectrophotometric study of aqueous iron(II) chloride complexing from 25 to 200°C, Geochim. Cosmochim. Acta 54, 2207.CrossRefGoogle Scholar
  36. 36.
    Bennett, G. E. and Johnston, K. P. (1994) UV-visible Absorbance Spectroscopy of organic Probes in Supercritical Water, J. Phys. Chem. 98, 441.CrossRefGoogle Scholar
  37. 37.
    Chlistunoff, J. B. and Johnston, K. P. (1998) UV-Vis Spectroscopic Determination of the Dissociation Constant of Bichromate from 160°C to 400°C, J. Phys. Chem. B. 102, 3933.Google Scholar
  38. 38.
    Mesmer, R. E., Palmer, D. A. and Simonson, J. M. (1991) in Activity Coefficients in Electrolyte Solutions,2nd Edition, ed. K. S. Pitzer, CRC Press, Boca Raton, pp. 491.Google Scholar
  39. 39.
    Mesmer, R. E., Marshall, W. L., Palmer, D. A., Simoeson, J. M. and Holmes, H. F. (1988) Thermodynamics of Aqueous Association and lonization Reactions at High Temperatures and Pressure, J. Solution Chem. 17, 699–718.CrossRefGoogle Scholar
  40. 40.
    Balbuena, P. B., Johnston, K. P. and Rossky, P. J. (1996) Molecular Dynamics Simulation of Electrolyte Solutions in Ambient and Supercritical Water: II. Relative Acidity of HCl, J. Phys. Chem. 100, 2716–2722.CrossRefGoogle Scholar
  41. 41.
    Xiang, T. and Johnston, K. P. (1997) Acid-Base Behavior in Supercritical Water: β-Naphthoic Acid-Ammonia Equilibrium, J. Solution Chemistry 26, 13–30.Google Scholar
  42. 42.
    Ramayya, S. and Antal, M. J., Jr (1990) Influence of pressure on the acid-catalysed rate constant for 1-propanol dehydration in supercritical water, J. Am. Chem. Soc. 112, 1927–1931.CrossRefGoogle Scholar
  43. 43.
    Ulmer, G. C. and Barnes, H. L. (1987) Hydrothermal Experimental Techniques, Wiley-Interscience, New York.Google Scholar
  44. 44.
    Dell’Orco, P. C., Foy, B. R., Le, L., Ely, J., Patterson, K. and Buelow, S. J. (1995) Hydrothermal Oxidation of Organic Compounds by Nitrate and Nitrite, ACS Symp. Ser. 608, 179.CrossRefGoogle Scholar
  45. 45.
    Palmer, D. A., Wesolowski, D. and Mesmer, R. E. (1987) A Potentiometric investigation of the hydrolysis of chromate(VI) ion in NaCl Media to 175°C, J. Solution Chem. 16, 443–463.CrossRefGoogle Scholar
  46. 46.
    Straatsma, T. P. and McCammon, J. A. (1992) Computational Alchemy, Ann. Rev. Phys. Chem. 43, 407–35.CrossRefGoogle Scholar
  47. 47.
    Flanagin, L. W., Balbuena, P. B., Johnston, K. P. and Rossky, P. J. (1995) Temperature and Density Effects on an SN2 Reaction in Supercritical Water, J. Phys. Chem 99, 5196.CrossRefGoogle Scholar
  48. 48.
    Bennett, G. E., Rossky, P. J. and Johnston, K. P. (1995) Continuum Electrostatics Model for an SN2 Reaction in Supercritical Water, J. Phys. Chem. 99, 16136–16143.CrossRefGoogle Scholar
  49. 49.
    Balbuena, P. B., Johnston, K. P. and Rossky, P. J. (1996) Molecular Dynamics Simulation of Electrolyte Solutions in Ambient and Supercritical Water: I. Ion Solvation, J. Phys. Chem. 100, 2706–2715.CrossRefGoogle Scholar
  50. 50.
    Johnston, K. P., Bennett, G. E., Balbuena, P. B. and Rossky, P. J. (1996) Continuum Electrostatic Model for Ion Solvation and Relative Acidity of HCl in Supercritical Water, J. Am. Chem. Soc. 118, 6746–6752.CrossRefGoogle Scholar
  51. 51.
    Flanagin, L. W., Balbuena, P. B., Johnston, K. P. and Rossky, P. J. (1997) Ion Solvation in Supercritical Water Based on an Adsorption Analogy, J. Phys. Chem. 101, 7798–8005.Google Scholar
  52. 52.
    Berendsen, H. J. C., Grigera, J. R. and Straatsma, T. P. (1987) The missing term in effective pair potentials, J. Phys. Chem. 91, 6269–71.CrossRefGoogle Scholar
  53. 53.
    Dang, L. X. (1998) Importance of Polarization Effects in Modeling the Hydrogen Bond in Water Using Classical Molecular Dynamics Techniques, J. Phys. Chem. B. 102, 620–24.CrossRefGoogle Scholar
  54. 54.
    de Pablo, J. J., Prausnitz, J. M., Strauch, H. J. and Cummiogs, P. T. (1990) Molecular simulation of water along the liquid-vapor coexistence curve from 25°C to the critical point, J. Chem. Phys. 93, 7355–7359.CrossRefGoogle Scholar
  55. 55.
    Guissani, Y. and Guillot, B. (1993) A computer simulation study of the liquid-vapor coexistence curve of water, J. Chem. Phys. 98, 8221–8235.CrossRefGoogle Scholar
  56. 56.
    Guillot, B. and Guissani, Y. (1993) A computer simulation study of the temperature dependence of the hydrophobic hydration, J. Chem. Phys. 99, 8075.CrossRefGoogle Scholar
  57. 57.
    Del Buono, G. S., Rossky, P. J. and Schnitker, J. (1991) Model dependence of quantum isotope effects in liquid water, J. Chem. Phys. 95, 3728–37.CrossRefGoogle Scholar
  58. 58.
    Gilson, M. K. and Sharp, K. A. (1987) Calculating the Electrostatic Potential of Molecules in Solution: Method and Error Assesment, J. Comput. Chem. 9, 327–335.CrossRefGoogle Scholar
  59. 59.
    Davis, M. E. and McCammon, J. A. (1990) Electrostatics in biomolecular structure and dynamics, Chem. Rev. 90, 509–21.CrossRefGoogle Scholar
  60. 60.
    Luo, H. and Tucker, S. C. (1995) Compressible Continuum Solvation Model for Molecular Solutes, J. Am. Chem. Soc. 117, 11359–11360.CrossRefGoogle Scholar
  61. 61.
    Luo, H. and Tucker, S. C. (1997) A Compressible Continuum Model Study of the Chloride plus Methyl Chloride Reaction in Supercritical Water, J. Phys. Chem. B, 1063–71.Google Scholar
  62. 62.
    Kajimoto, O., Futakami, M, Kobayashi, T. and Yamasaki, K. (1988) Charge-Transfer-State Formation in Supercritical Fluid: (N, N-Dimethylamino) benzonitrile in CF3H., 92, 1347.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Keith P. Johnston
    • 1
  • Peter J. Rossky
    • 2
  1. 1.Department of Chemical Engineering and BiochemistryUniversity of Texas at AustinAustinUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of Texas at AustinAustinUSA

Personalised recommendations