Advertisement

Polymerization and Polymer Modification Reactions in Near and Supercritical Fluids

  • E. Kiran
Chapter
  • 760 Downloads
Part of the NATO Science Series book series (NSSE, volume 366)

Abstract

Polymerization is the process of converting moeomer(s) to long chain molecules. It is a basic process to produce materials with “microstructural” features. The microstractural consequences of polymerization are reflected in the molecular weight, molecular weight distribution, chain end groups, repeat unit orientation and chain regularity (as in tacticity), monomer sequence distributions (as in copolymers), branching, or crosslinking. The chain microstructure influences the ultimate properties of polymers that find ever increasing use in our everyday life.

Keywords

Atom Transfer Radical Polymerization High Density Polyethylene Supercritical Fluid Supercritical Carbon Dioxide Dispersion Polymerization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scriolsky, K. M. (1993) Polymerization reactions at high pressures and supercritical conditions, J. Supercritical Fluids, 6, 103–128.CrossRefGoogle Scholar
  2. 2.
    Kiran, E. (1194) Polymer formation, modifications and processing in or with supercritical fluids, in Supercritical Fluids, E. Kiran and J.M.H. Levelt Sengers, Eds, Kluwer Academic Publishers, Dordrecht, The Netherlands; pp. 541–588.Google Scholar
  3. 3.
    a) Canelas, D. A. and DeSimone, J. M. (I997) Polymerization in liquid and supercritical carbon dioxide, Adv. Polym. Sci. 133, 103440. (b)de Simone, J. M, Maury, E. E., Menceloglu, Y. Z., McLain, J. B., Romack, T. J. and Combes, J. R. (1994) Dispersion polymerization in supercritical carbon dioxide, Science, 265, 356–359.Google Scholar
  4. 4.
    Ogo, Y. (1984) Polymerization at high pressures, JMS-Rev. Macromol. Chetn. Phys. C24 (1), 1–48.CrossRefGoogle Scholar
  5. 5.
    Beasley, J. K. (1989) Polymerization at high pressures, Ch. 21 inComprehensive Polymer Science, G. Allen, Ed., Pergamon Press, New York; pp. 273–282.Google Scholar
  6. 6.
    Ehrlich, P. and Mortimer, G. A. (1970) Fundamentals of the free radical polymerization of ethylene, Adv. Polym. Sci., 7, 386–448. (b) Buback, M., and Dröge, T. (1997), High-pressure free-radical copolymerization of ethene and methyl acrylate, Macromol. Chem. Phys. 198, 3627–3638.Google Scholar
  7. 7.
    Kwag, B. G. and Choi, K. Y. (1994) Effect of initiator characteristics no high-pressure ethylene polymerization in autoclave reactors, Ind. Eng. Chem. Res. 33, 211–217.CrossRefGoogle Scholar
  8. 8.
    Lacunza, M. H., Ugrin, P. E., and Brandolin, A. (1998) Latin Am. Applied Res., 28, 101–106.Google Scholar
  9. 9.
    Folie, B. J. and Radosz, M. (1995) Phase equilibria in high-pressure polyethylene technology, Ind. Eng. Chem. Res. 34, 1501–1516.CrossRefGoogle Scholar
  10. 10.
    Huekelbach, D. and Luft, G (1998). Critical points of mixtures of ethylene and polyethylene wax under high pressure, Fluid Phase Equilibria, 146, 187–195.CrossRefGoogle Scholar
  11. 11.
    Luft, G., Batarseh, B. and Cropp, R. (1993), High pressure polymerization of ethylene with a homogeneous metallocene catalyst, Die Angew. Makromol. Chemie, 212, 157–166.CrossRefGoogle Scholar
  12. 12.
    (a).Ewen, J. A. (1997) New chemical tools to create plastics, Scientific American, May, 86–91. (b) Theopold, K. H. (1997), Understanding chromium-based olefin polymerization catalysts, Chemtech, October, 26–31.; (c) Bergemann, C. and Luft, G. (1998) Application of cationic activated metallocene catalysts system in the copolymerization of ethylene and 1-butene under high pressure, J. Molec. Catalysis A: Chemical, 135, 41–45.Google Scholar
  13. 13.
    Inoue, S. Koinuma, H. and Tsurata, T. (1969) Copolymerization of carbon dioxide andepoxide, J. Appl. Polm. Sci. Part B Polymer Letters, 7, 287.Google Scholar
  14. 14.
    S. Inoue (1976), High polymers from CO2, Chemtech, 6, 588.Google Scholar
  15. 15.
    Darensbourg, D. J., Stafford, N. W. and Katsurao, T. (1995) Supercritical carbon dioxide as solvent for copolymerization of carbon dioxide and propylene oxide using a heterogeneous zinccarboxylate catalyst, J. Molecular Catalysis A: Chemical 104, L1–L4.CrossRefGoogle Scholar
  16. 16.
    Super, M., Berluche, E., Costello, C. and Beckman, E. (1997) Copolymerization of 1,2 epoxycyclohexane Macromolecules, 30, 368–372.CrossRefGoogle Scholar
  17. 17.
    deSimone, J. M., Guan, Z., and Elsbernd, C. S. (1992) Synthesis of fluoropolymers in supercritical carbon dioxide, Science, 257, 945–947.CrossRefGoogle Scholar
  18. 18.
    Ryan, J., Erkey, C. and Shaw, M. (1997) Kinetics of polymerization of 1H, 1H, 5Hoctafluoropentyl acrylate in supercritical carbon dioxide, ACS Polymer Preprints, 38(2), 428–429.Google Scholar
  19. 19.
    Kiran, E. and Saraf, V. P. (1990) Polymerization of styrene in supercritical n-butane, J. Supercrit. Fluids, 3, 198–204.CrossRefGoogle Scholar
  20. 20.
    Beuermann, S., Buback, M., Isemer, C. and Wahl, A. (1998) Homogeneous phase free-radical polymerization of styrene in supercritical carbon dioxide, Paper presented at the NATO ASI on Supercritical Fluids, Kemer, Antalya, Turkey, July 1998. (b) Sabine, B., Buback, M., Isemer, C., and Wahl, A. (1999) Homogeneous free-radical polymerization of styrene in supercritical CO2, Macromol. Rapid Commun. 20, 26–32.CrossRefGoogle Scholar
  21. 21.
    Kumar, S, K. and Suter, U. W. (1987) Precipitation polymerization of styrene in supercritical ethane, ACS Polymer Preprints, 28(2), 286–287.Google Scholar
  22. 22.
    Saraf, V. P. and Kiran, E. (1990) Free radical polymerization of styrene in supercritical fluids, ACS Polymer Preprints, 31 (1), 687–688.Google Scholar
  23. 23.
    Sun, Y. P., Rollins, H. W. and Simmons, K. J. (1997) Properties of supercritical fluids and the effects on polymerization reactions and materials processing, ACS Polymer Preprints, 38(2), 448–449.Google Scholar
  24. 24.
    Dada, E., Lau, W., Merrit, R. F., Paik, Y. H. and Swift, G. (1996) Synthesis of poly(acrylic acids) in supercritical carbon dioxide, ACS PMSE Preprints, 74, 427.Google Scholar
  25. 25.
    Tan, C. S. and Hsu, T. J. (1997), Alternating copolymerization of carbon dioxide and propylene oxide with a rare earth metal coordination catalyst, Macromolecules, 30, 3147–3150.CrossRefGoogle Scholar
  26. 26.
    Kiran, E. and Gokmenoglu, Z. (1996) Density modulated supercritical levitation polymerization, ACS PMSE Preprints, 74, 406–407. (b)Gokmenoglu, Z., Xiong, Y., and Kiran, E. (1996) Volumetric properties of carbon dioxide + sulfur hexaflouride at high pressures, J, Chem. Eng. Data, 41, 354–360.Google Scholar
  27. 27.
    Lepilleur, C. and Beckman, E. J. (1997) Dispersion polymerization of methyimethacrylate in supercritical CO2, Macromolecules, 30, 745–756.CrossRefGoogle Scholar
  28. 28.
    O’Neill, M. L., Yates, M. Z., Johnston, K. P., Smith, C. D. and Wilkinson, S. P. (1988), Dispersion polymerization in supercritical CO2 with siloxane — based macronomer, Macromolecules, 31, 2838–2847.CrossRefGoogle Scholar
  29. 29.
    Hsiao, Y.-L. and DeSimone, J. M. (1997) Dispersion polymerization of methyl methacrylate in supercritical carbon dioxide: Influence of helium concentration on particle size and particle size distributions, J. Polym. Sci. Polym. Chem. Ed., 35, 2009–2013.CrossRefGoogle Scholar
  30. 30.
    Pernecker, T. and Kennedy, J. P. (1994) Carbocationic polymerizations in supercritical carbon dioxide I. Exploratory experiments with isobutylene, Polymer Bulletin, 32, 537–5433.CrossRefGoogle Scholar
  31. 31.
    Pemecker, T., Deak, Gy. and Kennedy, J. P. (1995) Carbocationic polymerization in supercritical CO2. IV. Isomerization polymerization of 3-methyl-l-butene and 4-methyl-l-pentene, Mecromolecular Reports, A32 (suppl. 7), 969–978.Google Scholar
  32. 32.
    Clark, M. R. and DeSimone, J. M. (1996) Cationic polymerizations in liquid and supercritical carbon dioxide, ACS Polymer Preprints, 37(1), 365–366.Google Scholar
  33. 33.
    Odell, P. G. and Hamer, G. K. (1997) Polycarbonates via melt esterification in supercritical carbon dioxide, ACS Polymer Preprints, 38(2), 470–471.Google Scholar
  34. 34.
    Givens, R. D., Jikei, M. and DeSimone, J. M. (1997) Synthesis of polyamides and polycarbonates using supercritical CO2, ACS Polymer Preprints, 38 (2), 468–469.Google Scholar
  35. 35.
    Burke, A. L., Givens, R. D., Jikei, M. and de Simone, J. M. (1997) Use of CO2 in step-growth polymerizations: From plasticised melts to solid state polymerization, ACS Polymer Preprints, 38(2), 387–388.Google Scholar
  36. 36.
    Buback, M., Elstner, U., Rindfleisch, F., McHugh, M. (1997) Polymer modification of polyethylene-acylic copolymers in near critical water, Macromol. Chem. Phys. 198, 1189–1196.CrossRefGoogle Scholar
  37. 37.
    Watanabe, M, Hirakoso, H., Sawamoto, S, Adschiri, T. and Arai, K. (1998) Polyethylene conversion in supercritical water, J. Supercritic. Fluids, 13, 247–252CrossRefGoogle Scholar
  38. 37.
    Watanabe, M, Hirakoso, H., Sawamoto, S, Adschiri, T. and Arai, K. (1998) Polyethylene conversion in supercritical water, J. Supercritic. Fluids, 13, 247–252CrossRefGoogle Scholar
  39. 39.
    Kiran, E. and Gillham, J. (1976) Pyrolysis-molecular weight chromatography: A new on-line system for analysis of polymers. II. Thermal decomposition of polyolefins: Polyethylene, polypropylene, polyisoprene J. Appl. Polym. Sci. 20, 2045–2068.CrossRefGoogle Scholar
  40. 40.
    Sasaki, M., Kabyemela, B., Malalulan, R., Hirose, S., Takeda, N., Adschiri, T. and Arai, K. (1998) Cellulose hydrolysis insubcritical and supercritical water, J. Supercrit. Fluids, 13, 261–268.CrossRefGoogle Scholar
  41. 41.
    Balkan, H. (1993) High pressure extraction and delignification of red spruce with near and supercritical fluids, Ph. D. Thesis, University of Maine, Orono, Maine, USA. ( Thesis Advisor: E. Kiran)Google Scholar
  42. 42.
    Li. L. and Kiran, E. (1988) Interaction of supercritical fluids with lignocellulosic materials, Ind. Eng. Chem. Res. 17, 1301–1312.Google Scholar
  43. 43.
    Chen, D. T., Perman, C. A., Riechert, M. E., and Hoven, J. (1995) Depolymerization of tire and natural rubber using supercritical fluids, J. Hazardous Materials, 44, 53–60.CrossRefGoogle Scholar
  44. 44.
    Kerschner, J. L., Jueller, S. H. and Harris, R. Polymer modification in supercritical carbon dioxide, ACS PMSE Preprints, 74, 246–247, 1996.Google Scholar
  45. 45.
    Yalpani, M (1993) Supercritical fluids: puissant media for the modification of polymers andbiopolymers, Polymer, 34, 1102.CrossRefGoogle Scholar
  46. 46.
    Watkins, J. J. and McCarthy, T. J. (1995) Polymerization of styrene in supercritical CO2-swollen poly(chlorotrifluoroethylene) Macromolecules, 28(12), 4067–4074.CrossRefGoogle Scholar
  47. 47.
    Kung, E., Lesser, A. J. and McCarthy, T. J. (1997) Mechanical properties of polystyrene/polyethylene blends prepared by suing supercritical CO2 processing, ACS Polymer Preprints, 38, 462–463.Google Scholar
  48. 48.
    Han, S. J., Lohse, D. J., Radosz, M., and Sperling, L. H. (1997) ACS Polymer Preprints, 38, 432–433.Google Scholar
  49. 49.
    Kertort, F. M, Lawless, G. A., and Armes, S. P. (1997) First example of a conducting polymer synthesized in supercritical fluids, J. Mater. Chem. 7(10), 1965–1966.Google Scholar
  50. 50.
    Fu, Y., Palo, D. R., Erkey, C. and Weiss, R. (1997) Synthesis of conductive poly pyrrole/polyurethane foams via a supercritical fluid process, Macromolecules, 30, 7611–7613.CrossRefGoogle Scholar
  51. 51.
    Kiran, E. (1995) Potential utilization of supercritical fluids — Reflections forthermoset systems, presented at the Symposium on Thermoseiting Polymers, Princeton University, Princeton, New Jersey, September 22–23.Google Scholar
  52. 52.
    Elliot, J. R. and Cheung, H. M. (1993) Light scattering study of polymer network formation in supercritical diluent, in Supercritical Fluid Engineering Science, Kiran, E. and Brennecke, J. M., Eds., ACS Symposium Series 514, pp. 271–280.Google Scholar
  53. 53.
    Launch, J. C. (1988), The crosslinking polymerization of styrene and methylmethacrylate in supercritical carbon dixoide, Ph. D. Thesis, University of Akron, Akron, Ohio, USA. ( Thesis Advisor: H. M. Cheung)Google Scholar
  54. 54.
    Cooper, A. I., Hams, W. P., and Holmes, A. B. (1998) Synthesis of cross-linked polymermicrospheres in supercritical carbon dioxide, Macromol. Rapid. Commun. 19, 353–357.CrossRefGoogle Scholar
  55. 55.
    Filardo, G., Dispenza, C., Silvestri, G. and Sparado, G. (1998) Irradiation of low and high density polyethylenes in the presence of carbon dioxide insubcritical an supercritical condition, J. Supercritc. Fluids, 12, 177–184.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • E. Kiran
    • 1
    • 2
  1. 1.Department of Chemical EngineeringUniversity of MaineOronoUSA
  2. 2.Department of Chemical EngineeringVirginia TechBlacksburgUSA

Personalised recommendations