Skip to main content

Establishment and Characteristics of Human Colorectal Adenocarcinoma Cell Lines

  • Chapter
Epithelia
  • 63 Accesses

Abstract

Many biological studies of colorectal carcinoma require the availability of established cell lines. These cell lines provide an unlimited quantity of carcinoma cells without contamination with the other cell types found in profusion in primary tumours. The characteristics of established cell lines differ widely. A bank of these cell lines, reflecting some of the diversity observed in primary human colorectal carcinoma, is a useful tool with which to study the biology of colorectal carcinoma cells. In addition, some of these cell lines retain sufficient of the differentiated features characteristic of the normal epithelium to make them useful model systems with which to study the functions of colorectal epithelium. This is particularly useful in light of the inability to establish differentiating cultures from normal colorectal epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tompkins, W. A., Watrach, A. M., Schmale, J. D., Schultz, R. M. and Harris, J. A. (1974). Cultural and antigenic properties of newly established cell strains derived from adenocarcinomas of the human colon and rectum. J. Nat. Cancer Inst., 52, 1101–1110

    PubMed  CAS  Google Scholar 

  2. Fogh, J. and Trempe, G. (1975). New human tumour cell lines. In Fogh, J. (ed.) Human Tumour Cells in Vitro, pp. 115–141. (New York: Plenum Press)

    Google Scholar 

  3. Leibowitz, A., Stinson, J. C., McCombs, W. B., McCoy, C. E., Mazur, K. C. and Mabry, N. D. (1976). Classification of human colorectal adenocarcinoma cell lines. Cancer Res. 36, 4562–4569

    Google Scholar 

  4. Brattain, M. G., Brattain, D. E., Fine, W. D., Khaled, F. M., Marks, M. E., Kimball, P. M., Arcolano, A. and Danbury, B. H. (1981). Initiation and characterization of cultures of human colonie carcinoma with different biological characteristics utilizing feeder layers of confluent fibroblasts. Oncodev. Biol. Med., 2, 355–366

    PubMed  CAS  Google Scholar 

  5. McBain, J. A., Weese, J. L., Meisner, L. F., Wolberg, W. H. and Willson, J. K. V. (1984). Establishment and characterisation of human colorectal cancer cell lines. Cancer Res., 44, 5813–5821

    PubMed  CAS  Google Scholar 

  6. Kirkland, S. C. and Bailey, I. G. (1986). Establishment and characterisation of six human colorectal adenocarcinoma cell lines. Br. J. Cancer, 53, 779–785

    Article  PubMed  CAS  Google Scholar 

  7. Park, J.-G., Oie, H. K., Sugarbaker, P. H., Henslee, J. G. Chen, T.-R., Johnson, B. E. and Gazdar, A. (1987). Characteristics of cell lines established from human colorectal carcinoma. Cancer Res., 47, 6710–6718

    PubMed  CAS  Google Scholar 

  8. Willson, J. K. V., Bittner, G. N., Oberley, T. D., Meisner, L. F. and Weese, J. L. (1987). Cell culture of human colon adenomas and carcinomas. Cancer Res., 47, 2704–2713

    PubMed  CAS  Google Scholar 

  9. Brattain, M. G., Brattain, D. E., Sarrif, A. M., McRae, L. J., Fine, W. D. and Hawkins, J. G. (1982). Enhancement of growth of human colon tumor cell lines by feeder layers of murine fibroblasts. J. Nat. Cancer Inst., 69, 767–771

    PubMed  CAS  Google Scholar 

  10. Whitehead, R. H., Jones, J. K., Gabriel, A. and Lukies, R. E. (1987). A new colon carcinoma cell line (LIM 1863) that grows as organoids with spontaneous differentiation into crypt-like structures in vitro. Cancer Res., 47, 2683–2689

    PubMed  CAS  Google Scholar 

  11. Kimball, P. M. & Brattain, M. G. (1980). Isolation of a cellular subpopulation from a human colonic carcinoma cell line. Cancer Res., 40, 1574–1579

    PubMed  CAS  Google Scholar 

  12. Noguchi, P., Wallace, R., Johnson, J., Earley, E. M., O’Brien, S., Ferrone, S., Pellegrino, M. A., Milstein, J., Needy, C., Browne, W. and Petricciani, J. (1979). Characterisation of WiDr: A human colon carcinoma cell line. In Vitro, 15, 401–408

    Article  PubMed  CAS  Google Scholar 

  13. Chen, T. R., Drabkowski, D., Hay, R. J., Macy, M. and Peterson, W. (1987). WiDr is a derivative of another colon adenocarcinoma cell line, HT-29. Cancer Genet. Cytogenet., 27, 125–134

    Article  PubMed  CAS  Google Scholar 

  14. Chen, T. R. (1977). In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp. Cell Res., 104, 255–262

    CAS  Google Scholar 

  15. McGarrity, G. J. (1982). Detection of mycoplasmal infection of cell cultures. Adv. Cell Culture, 2, 99–131

    Google Scholar 

  16. Kirkland, S. C. (1988). Clonal origin of columnar, mucous and endocrine cell lineages in human colorectal epithelium. Cancer, 61, 1359–1363

    Article  PubMed  CAS  Google Scholar 

  17. Kirkland, S. C. (1986). Endocrine differentiation by a human rectal adenocarcinoma cell line (HRA-19). Differentiation, 33, 148–155

    Article  PubMed  CAS  Google Scholar 

  18. Shamsuddin, A. M., Phelps, P. C. and Trump, B. F. (1982). Human large intestinal epithelium: light microscopy and ultrastructure. Hum. Pathol., 13, 790–803

    Article  PubMed  CAS  Google Scholar 

  19. Chang, W. W. L. and Leblond, C. P. (1971). Renewal of the epithelium in the descending colon of the mouse: 1. Presence of three epithelial cell populations. Vacuolated, columnar and argentaffin. Am. J. Anat., 131, 73–100

    Article  PubMed  CAS  Google Scholar 

  20. Cheng, H. and Leblond, C. P. (1974). Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine: V. Unitarian theory of the origin of the four epithelial cell types. Am. J. Anat., 141, 537–562

    Article  PubMed  CAS  Google Scholar 

  21. Cox, W. F. and Pierce, G. (1982). The endodermal origin of the endocrine cells of an adenocarcinoma of the colon of the rat. Cancer, 50, 1530–1538

    Article  PubMed  Google Scholar 

  22. Ponder, B. A. J., Schmidt, G. H., Wilkinson, M. M., Wood, M. J., Monk, M. and Reid, A. (1985). Derivation of mouse intestinal crypts from single progenitor cells. Nature (London), 31, 689–691

    Article  Google Scholar 

  23. Namba, M., Miyamata, K., Hyodoh, F., Iwama, T., Iwama, T., Utsunomiya, J., Fukushima, F. and Kimoto, T. (1983). Establishment and characterisation of a human colon carcinoma cell line (KMS-4) from a patient with hereditary adenomatosis of the colon and rectum. Int. J. Cancer., 32, 697–702

    Article  PubMed  CAS  Google Scholar 

  24. Pinto, M., Robine-Leon, S., Appay, M-D., Kedinger, M., Triadou, N., Dussaulx, E., Lacroix, B., Simon-Assmann, P., Haffen, K. and Zweibaum, A. (1983). Enterocytic-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol. Cell, 47, 323–330

    Google Scholar 

  25. Dharmsathaphorn, K., McRoberts, J. A. Mandel, K. G., Tisdale, L. D. and Masui, H. (1984). A human colonic tumor cell line that maintains vectorial electrolyte transport. Am. J. Physiol., 246, G204–G208

    PubMed  CAS  Google Scholar 

  26. Whitehead, R. H., Macrae, F. A., St. John, D. J. B. and Ma, J. (1985). A colon cancer cell line (LIM 1215) derived from a patient with inherited nonpolyposis colorectal cancer. J. Nat. Cancer Inst., 74, 759–765

    PubMed  CAS  Google Scholar 

  27. Kirkland, S. C. (1985). Dome formation by a human colonic adenocarcinoma cell line (HCA-7). Cancer Res., 45, 3790–3795

    PubMed  CAS  Google Scholar 

  28. Grasset, E., Pinto, M., Dussaulx, E., Zweibaum, A. and Desjeux, J-F. (1984). Epithelial properties of human colonic carcinoma cell line Caco-2: electrical parameters. Am. J. Physiol., 247, C260–267

    PubMed  CAS  Google Scholar 

  29. Ramond, M-J., Martinot-Peignoux, M. and Erlinger, S. (1985). Dome formation in the human colon carcinoma cell line Caco-2 in culture. Influence of ouabain and permeable supports. Biol. Cell, 54, 89–92

    Article  PubMed  CAS  Google Scholar 

  30. Dharmsathaphorn, K., Mandel, K. G. Masui, H. and McRoberts, J. A. (1985). Vasoactive intestinal-polypeptide induced chloride secretion by a colonic epithelial cell line. J. Clin. Invest., 75, 462–471

    Article  PubMed  CAS  Google Scholar 

  31. Cuthbert, A. W., Kirkland, S. C. and MacVinish, L. J. (1985). Kinin effects on ion transport in monolayers of HCA-7 cells, a line from a human colonic adenocarcinoma. Br. J. Pharmacol., 86, 3–5

    Article  PubMed  CAS  Google Scholar 

  32. Cuthbert, A. W., Egleme, C., Greenwood, H., Hickman, M. E., Kirkland, S. C. and MacVinish, L. J. (1987). Calcium and cyclic AMP-dependent chloride secretion in human colonic epithelia. Br. J. Pharmacol., 91, 503–515

    Article  PubMed  CAS  Google Scholar 

  33. Welsh, M. J., Smith, P. L., Fromm, M. and Frizzell, R. A. (1982). Crypts are the site of intestinal fluid and electrolyte secretion. Science, 218, 1219–1221

    Article  PubMed  CAS  Google Scholar 

  34. Cuthbert, A. W. (1988). Transepithelial ion transport in cultured colonic epithelial cell monolayers. In Jones, C. J. (ed.) Epithelia: Advances in Cell Physiology and Cell Culture, pp. 49–64. (Lancaster: MTP Press)

    Google Scholar 

  35. Zweibaum, A., Triadou, N., Kedinger, M., Augeron, C., Robine-Leon, S., Pinto, M., Rousset, M. and Haffen, K. (1983). Sucrase isomaltase: A marker of foetal and malignant epithelial cells of the human colon. Int. J. Cancer, 32, 407–412

    Article  PubMed  CAS  Google Scholar 

  36. Zweibaum, A., Hauri, H-P., Sterchi, E., Chantret, I., Haffen, K., Bamat, J. and Sordat, B. (1984). Immunohistological evidence, obtained with monoclonal antibodies, of small intestinal brush border hydrolases in human colon cancers and foetal colons. Int. J. Cancer, 34, 591–598

    Article  PubMed  CAS  Google Scholar 

  37. Augeron, C. and Laboisse, C. L. (1984). Emergence of permanently differentiated cell clones in a human colonic cancer cell line in culture after treatment with sodium butyrate. Cancer Res., 44, 3961–3969

    PubMed  CAS  Google Scholar 

  38. Huet, C., Sahuquillo-Merino, C., Coudrier, E. and Louvard, D. (1987). Absorptive and mucus-secreting subclones isolated from a multipotent intestinal cell line (HT-29) provide new models for cell polarity and terminal differentiation J. Cell Biol., 105, 345–357

    Article  PubMed  CAS  Google Scholar 

  39. Tsao, D., Morita, A., Bella, A., Luu, P. and Kim, Y. S. (1982). Differential effects of sodium butyrate, dimethylsulphoxide and retinoic acid on membrane-associated antigen, enzymes and glycoproteins of human rectal adenocarcinoma cells. Cancer Res., 42, 1052–1056

    PubMed  CAS  Google Scholar 

  40. Dexter, D. L., Lev, R., McKendall, G. R. Mitchell, P. and Calabres, P. (1984). Sodium butyrate-induced alteration of growth properties and glycogen levels in cultured human colon carcinoma cells. Histochem. J., 16, 137–149

    Article  PubMed  CAS  Google Scholar 

  41. Morita, A., Tsao, D. and Kim, Y. S. (1982). Effect of sodium butyrate on alkaline phosphatase in HRT-18, a human rectal cancer cell line. Cancer Res., 42, 4540–4545

    PubMed  CAS  Google Scholar 

  42. Chung, Y. S., Song, I. S., Erickson, R. H., Sleisenger, M. H. and Kim, Y. S. (1985). Effect of growth and sodium butyrate on brush border membrane-associated hydrolases in human colorectal cancer cell lines. Cancer Res., 45, 2976–2982

    PubMed  CAS  Google Scholar 

  43. Gum, J. R., Kam, W. K., Byrd, J. C, Hicks, J. W., Sleisenger, M. H. and Kim, Y. S. (1987). Effects of sodium butyrate on human colonic adenocarcinoma cells. Induction of placental-like alkaline phosphatase. J. Biol. Chem., 262, 1092–1097

    PubMed  CAS  Google Scholar 

  44. Pinto, M., Appay, M. D., Simon-Assmann, P., Chevalier, G., Dracopoli, N., Fogh, J. and Zweibaum, A. (1982). Enterocytic differentiation of cultured human colon cancer cells by replacement of glucose by galactose in the medium. Biol. Cell, 44, 193–196

    CAS  Google Scholar 

  45. Zweibaum, A., Pinto, M., Chevalier, G., Dussaulx, E., Triadou, N., Lacroix, B., Haffen, K., Brun, J-L. and Rousset, M. (1985). Enterocytic differentiation of a subpopulation of the human colon tumor cell line HT-29 selected for growth in sugar-free medium and its inhibition by glucose. J. Cell. Physiol., 122, 21–29

    Article  PubMed  CAS  Google Scholar 

  46. Laboisse, C. L., Maoret, J-J., Triadou, N. and Augeron, C. (1988). Restoration by polyethylene glycol of characteristics of intestinal differentiation in subpopulations of the human colonic adenocarcinoma cell line HT29. Cancer Res., 48, 2498–2504

    PubMed  CAS  Google Scholar 

  47. Pearse, A. G. E. and Polak, J. M. (1971). Neural crest origin of the endocrine polypeptide (APUD) cells of the gastrointestinal tract and pancreas. Gut, 12, 783–788

    Article  PubMed  CAS  Google Scholar 

  48. LeDouarin, N. M. and Teillet, M. A. (1973). The migration of neural crest cells to the wall of the digestive tract in avian embryo. J. Embryol. Exp. Morphol., 30, 31–48

    CAS  Google Scholar 

  49. Andrew, A. (1974). Further evidence that enterochromaffin cells are not derived from the neural crest. J. Embryol. Exp. Morphol., 31, 589–598

    PubMed  CAS  Google Scholar 

  50. Andrew, A., Kramer, B. and Rawdon, B. B. (1982). The embryonic origin of endocrine cells of the gastrointestinal tract. Gen. Comp. Endocrinol., 47, 249–265

    Article  PubMed  CAS  Google Scholar 

  51. Lloyd, R. V. and Wilson, B. S. (1983). Specific endocrine tissue marker defined by a monoclonal antibody. Science, 222, 628–630

    Article  PubMed  CAS  Google Scholar 

  52. Daar, A. S. and Fabre, J. W. (1983). The membrane antigens of human colorectal cancer cells: Demonstration with monoclonal antibodies of heterogeneity within and between tumours and anomalous expression of HLA-DR. Eur. J. Clin. Cancer Clin. Oncol., 19(2), 209–220

    Article  CAS  Google Scholar 

  53. Dexter, D. L., Spremulli, E. N., Fligiel, Z., Barbosa, J. A., Vogel, R., VanVoorhees, A. and Calabresi, P. (1981). Heterogeneity of cancer cells from a single human colon carcinoma. Am. J. Med., 71, 949–956

    Article  PubMed  CAS  Google Scholar 

  54. Brattain, M. G., Fine, W. D., Khaled, F. M., Thompson, J. and Brattain, D. E. (1981). Heterogeneity of malignant cells from a human colonic carcinoma. Cancer, 41, 1751–1756

    CAS  Google Scholar 

  55. Haffen, K., Kedinger, M. and Simon-Assmann, P. (1987). Mesenchyme-dependent differentiation of epithelial progenitor cells in the gut. J. Ped. Gastroenterol Nutr., 6, 14–23

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kirkland, S.C. (1990). Establishment and Characteristics of Human Colorectal Adenocarcinoma Cell Lines. In: Jones, C.J. (eds) Epithelia. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3905-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3905-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5739-4

  • Online ISBN: 978-94-011-3905-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics