Skip to main content

Regulation of Ion Channels in Cultured Airway Epithelial Cells

  • Chapter
Epithelia
  • 60 Accesses

Abstract

The airways are lined with pseudostratified columnar epithelium comprised predominantly of goblet, ciliated and basal cells. The goblet cells secrete mucus into the airway lumen (apical surface) contributing, in part, to the protective layer of mucus that traps infectious, particulate and chemical hazards of inspired air. The more abundant ciliated cells are covered with apical membrane projections (cilia) which propel mucus toward the oropharynx (mucociliary clearance)1. Basal cells anchor goblet and ciliated cells to the epithelial extracellular matrix2; they may also function as stem cells replenishing goblet and ciliated cells sloughed from the epithelium3. Adjacent epithelial cells are attached along their apical-basolateral borders by an elaborate complex of adherence proteins, including tight junctions (zonula occludens)4. These junctions limit the diffusion of water, ions and neutral molecules between the cells (paracellular transport). This cellular architecture allows the epithelium to function as a barrier between the airway lumen and the submucosal fluid compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sleigh, M. A., Blake, J. R. and Liron, N. (1988). The propulsion of mucus by cilia. Am. Rev. Respir. Dis., 137, 726–741

    PubMed  CAS  Google Scholar 

  2. Evans, M. J. and Plopper, C. G. (1988). The role of basal cells in adhesion of columnar epithelium to airway basement membrane. Am. Rev. Respir. Dis., 138, 481–483

    Article  PubMed  CAS  Google Scholar 

  3. Inayama, Y., Hook, G. E. R, Brody, A. R. et al. (1989). In vitro and in vivo growth and differentiation of clones of tracheal basal cells. Am. J. Pathol., 134, 539–549

    PubMed  CAS  Google Scholar 

  4. Gumbiner, B. (1987). Structure, biochemistry, and assembly of epithelial tight junctions. Am. J. Physiol., 253 (Cell Physiol., 22), C749–C758

    PubMed  CAS  Google Scholar 

  5. Welsh, M. J., Smith, P. L. and Frizzell, R. A. (1982). Chloride secretion by canine tracheal epithelium. II. The cellular electrical potential profile. J. Membr. Biol., 70, 227–238

    Article  PubMed  CAS  Google Scholar 

  6. Welsh, M. J. (1987). Electrolyte transport by airway epithelia. Physiol. Rev., 67, 1143–1184

    PubMed  CAS  Google Scholar 

  7. Widdicombe, J. H., Basbaum, C. B. and Highland, E. (1985). Sodium-pump density of cells from dog tracheal mucosa. Am. J. Physiol., 248, (Cell Physiol., 17), C389–C398

    PubMed  CAS  Google Scholar 

  8. Widdicombe, J. H., Ueki, I. F., Bruderman, I. and Nadel, J. A. (1979). The effects of sodium substitution and ouabain on ion transport by dog tracheal epithelium. Am. Rev. Respir. Dis., 120, 385–392

    PubMed  CAS  Google Scholar 

  9. Welsh, M. J. (1983). Evidence for basolateral membrane potassium conductance in canine tracheal epithelium. Am. J. Physiol., 244 (Cell Physiol., 13), C377–C384

    PubMed  CAS  Google Scholar 

  10. Welsh, M. J. (1983). Inhibition of chloride secretion by furosemide in canine tracheal epithelium. J. Membr. Biol., 71, 219–226

    Article  PubMed  CAS  Google Scholar 

  11. Widdicome, J. H., Nathanson, I. T. and Highland, E. (1983). Effects of “loop” diuretics on ion transport by dog tracheal epithelium. Am. J. Physiol., 245 (Cell Physiol., 14), C388–C396

    Google Scholar 

  12. Welsh, M. J. (1984). Energetics of chloride secretion in canine tracheal epithelium: comparison of the metabolic cost of chloride transport with the metabolic cost of sodium transport. J. Clin. Invest., 74, 262–268

    Article  PubMed  CAS  Google Scholar 

  13. Widdicombe, J. H. (1990). Use of cultured airway epithelial cells in studies of ion transport. Am. J. Physiol., 258 (Lung Cell. Mol. Physiol., 2), L13–L18

    PubMed  CAS  Google Scholar 

  14. Gögelein, H. (1988). Chloride channels in epithelia. Biochim. Biophys. Acta, 947, 521–547

    Article  PubMed  Google Scholar 

  15. Widdicombe, J. J., Basebaum, C. B. and Highland, E. (1981). Ion contents and other properties of isolated cells from dog tracheal epithelium. Am. J. Physiol., 241 (Cell Physiol.), C184–C192

    PubMed  CAS  Google Scholar 

  16. Welsh, M. J., Smith, P. L. and Frizzell, R. A. (1983). Chloride secretion by canine tracheal epithelium. III. Membrane resistance and electromotive forces. J. Membr. Biol., 71, 209–218

    Article  PubMed  CAS  Google Scholar 

  17. Al-Bazzaz, F., Yadava, V. P. and Westenfelder, C. (1981). Modification of Na and CI transport in canine tracheal mucosa by prostaglandins. Am. J. Physiol. (Renal Fluid Electrolyte Physiol.), 240, F101–F105

    CAS  Google Scholar 

  18. Welsh, M. J. and Widdicombe, J. H. (1980). Pathways of ion movement in the canine tracheal epithelium. Am. J. Physiol., 239 (Renal Fluid Electrolyte Physiol), F215–F221

    PubMed  CAS  Google Scholar 

  19. Hille, B. (1984). Ionic Channels of Excitable Membranes. (Sunderland, MA: Sinauer Assoc.)

    Google Scholar 

  20. Lear, J. D., Wasserman, Z. R. and DeGrado, W. F. (1988). Synthetic amphiphilic peptide models for protein ion channels. Science, 240, 1177–1181

    Article  PubMed  CAS  Google Scholar 

  21. Jan, L. Y. and Jan, Y. N. (1989). Voltage-sensitive ion channels. Cell, 56, 13–25

    Article  PubMed  CAS  Google Scholar 

  22. Catterall, W. A. (1988). Structure and function of voltage-sensitive ion channels. Science, 242, 50–61

    Article  PubMed  CAS  Google Scholar 

  23. Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsu, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T. and Numa, S. (1984). Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature (London), 312, 121–127

    Article  CAS  Google Scholar 

  24. Salkoff, L., Butler, A., Wei, A., Scavarda, N., Giffen, C., Goodman, R. and Mandel, G. (1987). Genomic organization and deduced amino acid sequence of a putative sodium channel gene in Drosophila. Science, 237, 744–749

    Article  PubMed  CAS  Google Scholar 

  25. Papazian, D. M., Schwarz, T. L., Tempel, L., Jan, Y. N. and Jan, L. Y. (1987). Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science, 237, 749–753

    Article  PubMed  CAS  Google Scholar 

  26. Noda, M., Ikeda, T., Suzaki, H., Takeshima, H., Takahashi, T., Kuno, M. and Numa, S. (1986). Expression of functional sodium channels from cloned cDNA. Nature (London), 322, 826–828

    Article  CAS  Google Scholar 

  27. Benos, D. J., Saccomani, G., Brenner, B. M. and Sariban-Sohraby, S. (1986). Purification and characterization of the amiloride-sensitive sodium channel from A6 cultured cells and bovine renal papilla. Proc. Natl. Acad. Sci. USA, 83, 8525–8529

    Article  PubMed  CAS  Google Scholar 

  28. Sariban-Sohraby, S. and Benos, D. J. (1986). Detergent solubilization, functional reconstitution, and partial purification of epithelial amiloride-binding protein. Biochemistry, 25, 4639–4646

    Article  PubMed  CAS  Google Scholar 

  29. Benos, D. J., Saccomani, G. and Sariban-Sohraby, S. (1987). The epithelial sodium channel. J. Biol Chem., 262, 10613–10618

    PubMed  CAS  Google Scholar 

  30. Sorscher, E. J., Accavitti, M. A., Keeton, D., Steadman, E., Frizell, R. A. and Benos, D. J. (1988). Antibodies against purified epithial sodium channel from bovine renal papilla. Am. J. Physiol., 255, C835–C843

    PubMed  CAS  Google Scholar 

  31. Landry, D. W., Akabas, M. H., Redhead, C., Edelman, A., Cragoe, E. J. and Al-Awqati, Q. (1989). Purification and reconstitution of chloride channels from kidney and trachea. Science, 244, 1469–1472

    Article  PubMed  CAS  Google Scholar 

  32. Hamill, O., Marty, A., Neher, E., Sakmann, B. and Sigworth, F. J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch., 391, 85–100

    Article  PubMed  CAS  Google Scholar 

  33. Li, M., McCann, J. D., Liedtke, C. M., Nairn, A. C., Greengard, P. and Welsh, M. J. (1988). Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium. Nature (London), 331, 358–360

    Article  CAS  Google Scholar 

  34. Schoumacher, R. A., Shoemaker, R. L., Halm, D. R., Tallent, E. A., Wallace, R. W. and Frizzell, R. A. (1987). Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells. Nature (London), 330, 752–754

    Article  CAS  Google Scholar 

  35. Welsh, M. J., Li, M. and McCann, J. D. (1989). Activation of normal and cystic fibrosis Cl channels by voltage, temperature, and trypsin. J. Clin. Invest., 84, 2002–2007

    Article  PubMed  CAS  Google Scholar 

  36. Levitan, I. (1985). Phosphorylation of ion channels. J. Membr. Biol., 87, 177–190

    Article  PubMed  CAS  Google Scholar 

  37. Ewald, I. and Levitan, I. (1985). Modulation of single Ca2+ dependent K channel activity by protein phosphorylation. Nature (London), 315, 503–506

    Article  CAS  Google Scholar 

  38. Boucher, R. C., Cotton, C. U., Gatzy, J. T., Knowles, M. R. and Yankaskas, J. R. (1988). Evidence for reduced CI and increased Na+ permeability in cystic fibrosis human primary cell cultures. J. Physiol., 405, 77–103

    PubMed  CAS  Google Scholar 

  39. Welsh, M. J. and Liedtke, C. M. (1986). Chloride and potassium channels in cystic fibrosis airway epithelia. Nature (London), 322, 467–470

    Article  CAS  Google Scholar 

  40. Frizzell, R. A., Rechkemmer, G. and Shoemaker, R. L. (1986). Altered regulation of airway epithelial cell chloride channels in cystic fibrosis. Science, 233, 558–560

    Article  PubMed  CAS  Google Scholar 

  41. Jetten, A. M., Yankaskas, J., Jackson, M. J., Willumsen, N. J. and Boucher, R. C. (1989). Persistence of abnormal chloride conductance regulation in transformed cystic fibrosis epithelia. Science, 244, 1472–1475

    Article  PubMed  CAS  Google Scholar 

  42. Boucher, R. C., Stutts, M. J., Knowles, M. R., Cantley, L. and Gatzy, J. T. (1986). Na+ transport in cystic fibrosis respiratory epithelia. J. Clin. Invest., 78, 1245–1252

    Article  PubMed  CAS  Google Scholar 

  43. Welsh, M. J. and McCann, J. D. (1985). Intracellular calcium regulates basolateral potassium channels in a chloride-secreting epithelium. Proc. Natl. Acad. Sci. USA, 82, 8823–8826

    Article  PubMed  CAS  Google Scholar 

  44. McCann, J. D., Matsuda, J., Garcia, M., Kaczorowski, G. and Welsh, M. J. (1990). Basolateral K+ channels in airway epithelia: I. Regulation by Ca2+ and block by charyb-dotoxin. Am. J. Physiol (Lung Cell Mol. Physiol 2), 258, L334–L342

    CAS  Google Scholar 

  45. Kunzelmann, K., Pavenstadt, H. and Greger, R. (1989). Properties and regulation of chloride channels in cystic fibrosis and normal airway cells. Pflügers Arch., 415, 172–182

    Article  PubMed  CAS  Google Scholar 

  46. Disser, J. and Frömter, E. (1989). Properties of Na+ channels of respiratory epithelium from CF and non-CF patients. Pediatr. Pulm., 7 (Suppl. 4), 115a

    Google Scholar 

  47. Man, S. F. P., Duszyk, M. and French, A. S. (1989). Sodium channels in the apical membrane of human airway epithelial cells. Am. Rev. Respir. Dis., 139, A477

    Google Scholar 

  48. Welsh, M. J. (1986). Single apical membrane anion channels in primary cultures of canine tracheal epithelium. Pflügers Archiv., 407 (Suppl. 2), S116–S122

    Article  PubMed  CAS  Google Scholar 

  49. Welsh, M. J. (1986). An apical-membrane chloride channel in human tracheal epithelium. Science, 232, 1648–1650

    Article  PubMed  CAS  Google Scholar 

  50. Duszyk, M., French, A. S. and Man, S. F. P. (1989). Cystic fibrosis affects chloride and sodium channels in human airway epithelia. Can. J. Physiol. Pharmacol, 67, 1362–1365

    Article  PubMed  CAS  Google Scholar 

  51. Shoemaker, R. L., Frizzell, R. A., Dwyer, T. M. and Farley, J. M. (1986). Single chloride channel currents from canine tracheal epithelial cells. Biochim. Biophys. Acta, 858, 235–242

    Article  PubMed  CAS  Google Scholar 

  52. Schneider, G. T., Cook, D. I., Gage, P. W. and Young, J. A. (1985). Voltage sensitive, high-conductance chloride channels in the luminal membrane of culture pulmonary alveolar (type II) cells. Pflügers Arch., 404, 354–357

    Article  PubMed  CAS  Google Scholar 

  53. Valdivia, H. H., Dubinsky, W. P. and Coronado, R. (1988). Reconstitution and phosphorylation of chloride channels from airway epithelium membranes. Science, 242, 1441–1444

    Article  PubMed  CAS  Google Scholar 

  54. Smith, P. L., Welsh, M. J., Stoff, J. S. and Frizzell, R. A. (1982). Chloride secretion by canine tracheal epithelium: I. Role of intracellular cAMP levels. J. Memb. Biol., 70, 217–226

    Article  CAS  Google Scholar 

  55. Smith, J. J., McCann, J. D. and Welsh, M. J. (1990). Bradykinin stimulates airway epithelial Cl secretion via two second messenger pathways. Am. J. Physiol (Lung Cell. Mol. Physiol. 2), 258, L369–L377

    CAS  Google Scholar 

  56. Shorofsky, S. R., Field, M. and Fozzard, H. A. (1986). Changes in intracellular sodium with chloride secretion in dog tracheal epithelium. Am. J. Physiol., 250, C646–C650

    PubMed  CAS  Google Scholar 

  57. Miller, C., Moczydlowski, E., Latorre, R. and Phillips, M. (1985). Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from skeletal muscle. Nature (London), 313, 316–318

    Article  CAS  Google Scholar 

  58. McCann, J. D. and Welsh, M. J. (1990). Basolateral K+ channels in airway epithelia: II. Role in Cl secretion and evidence for two types of K+ channel. Am. J. Physiol. (Lung Cell. Mol. Physiol. 2), 258, L343–L348

    CAS  Google Scholar 

  59. Welsh, M. J. (1983). Barium inhibition of basolateral membrane potassium conductance in tracheal epithelium. Am. J. Physiol., 244 (Renal Fluid Electrolyte Physiol., 13), F639–F645

    PubMed  CAS  Google Scholar 

  60. McCann, J. D., Bhalla, R. C. and Welsh, M. J. (1989). Release of intracellular calcium by two different second messengers in airway epithelium. Am. J. Physiol., 257 (Lung Cell. Mol. Physiol., 1), L116–L124

    PubMed  CAS  Google Scholar 

  61. Clancy, J. P., McCann, J. D., Li, M. and Welsh, M. J. (1990). Calcium-dependent regulation of airway epithlial chloride channels. Am. J. Physiol., 258 (Lung Cell. Mol. Physiol., 2), L25–L32

    PubMed  CAS  Google Scholar 

  62. Widdicombe, J. H. and Welsh, M. J. (1980). Anion selectivity of the chloride transport process in dog tracheal epithelium. Am. J. Physiol., 239 (Cell Physiol., 8), C112–C117

    PubMed  CAS  Google Scholar 

  63. Cullen, J. J. and Welsh, M. J. (1987). Regulation of sodium absorption by canine tracheal epithelium. J. Clin. Invest., 79, 73–79

    Article  PubMed  CAS  Google Scholar 

  64. Van Driessche, W. and Zeiske, W. (1985). Ionic channels in epithelial cell membranes. Physiol. Rev., 65, 833–903

    PubMed  Google Scholar 

  65. Helman, S. I., Cox, T. C. and Van Driessche, W. (1983). Hormonal control of apical membrane Na transport in epithelia. J. Gen. Physiol., 82, 201–220

    Article  PubMed  CAS  Google Scholar 

  66. Garty, H. and Edelman, I. S. (1983). Amiloride-sensitive trypanization of apical sodium channels. J. Gen. Physiol., 81, 785–803

    Article  PubMed  CAS  Google Scholar 

  67. Brautigan, D. L.. (1988). Molecular defects in ion channel regulation in cystic fibrosis predicted from analysis of protein phosphorylation/dephosphorylation. Int. J. Biochem., 20, 745–752

    Article  PubMed  CAS  Google Scholar 

  68. Kume, H., Takai, A., Tokuno, H. and Tomita, T. (1989). Regulation of Ca2+-dependent K+-channel activity in tracheal myocytes by phosphorylation. Nature (London), 341, 152–154

    Article  CAS  Google Scholar 

  69. Li, M., McCann, J. D., Anderson, M. P., Clancy, J. P., Liedtke, C. M., Nairn, A. C., Greengard, P. and Welsh, M. J. (1989). Regulation of chloride channels by protein kinase C in normal and cystic fibrosis airway epithelia. Science, 244, 1353–1356

    Article  PubMed  CAS  Google Scholar 

  70. Welsh, M. J. (1987). Effect of phorbol ester and calcium inophore on chloride secretion in canine tracheal epithelium. Am. J. Physiol., 253 (Cell Physiol.), C828–C834

    PubMed  CAS  Google Scholar 

  71. Barthelson, R. A., Jacoby, D. B. and Widdicombe, J. H. (1987). Regulation of chloride secretion in dog tracheal epithelium by protein kinase C. Am. J. Physiol., 253 (Cell Physiol., 22), C802–C808

    PubMed  CAS  Google Scholar 

  72. Cohn, J. A. (1990). Protein disease C mediates cholinergically regulated protein phosphorylation in a Cl -secreting epithelium. Am. J. Physiol., 258 (Cell Physiol., 27), C227–C233

    PubMed  CAS  Google Scholar 

  73. Willumsen, N. J. and Boucher, R. C. (1989). Activation of an apical Cl conductance by Ca2+ ionophores in cystic fibrosis airway epithelia. Am. J. Physiol., 256 (Cell Physiol., 25), C226–C233

    PubMed  CAS  Google Scholar 

  74. Frizzell, R. A. (1987). Cystic fibrosis: A disease of ion channels? TINS, 10, 190–193

    CAS  Google Scholar 

  75. Welsh, M. J. (1986). Adrenergic regulation of ion transport by primary cultures of canine tracheal epithelium: Cellular electrophysiology. J. Membr. Biol., 91, 121–128

    Article  PubMed  CAS  Google Scholar 

  76. Widdicombe, J. H., Ueki, I. F., Emergy, D., Margolskee, D., Yergey, J. and Nadel, J. A. (1989). Release of cyclooxygenase products from primary cultures of tracheal epithelia of dog and human. Am. J. Physiol., 257 (Lung Cell. Mol. Physiol., 1), L361–L365

    PubMed  CAS  Google Scholar 

  77. Widdicombe, J. H. (1986). Cystic fibrosis and beta-adrenergic response of airway epithelial cell cultures. Am. J. Physiol., 251 (Regulatory Integrative Comp. Physiol., 20), R818–822

    PubMed  CAS  Google Scholar 

  78. Hwang, T-C., Lu, L., Zeitlin, P. L., Gruenert, D. C., Huganir, R. and Guggino, W. B. (1989). CI channels in CF: lack of activation by protein kinase C and cAMP-dependent protein kinase. Science, 244, 1351–1353

    Article  PubMed  CAS  Google Scholar 

  79. Knowles, M. R., Gatzy, J. T. and Boucher, R. C. (1981). Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. N. Engl. J. Med., 305, 1489–1495

    Article  PubMed  CAS  Google Scholar 

  80. Gowen, C. W., Lawson, E. E., Gingras-Leatherman, J., Gatzy, J. T., Boucher, R. C. and Knowles, M. R. (1986). Increased nasal potential difference and amiloride sensitivity in neonates with cystic fibrosis. J. Pediatr., 108, 517–521

    Article  PubMed  CAS  Google Scholar 

  81. Knowles, R. R., Gatzy, J. T. and Boucher, R. C. (1985). Aldosterone metabolism and transepithelial potential difference in normal and cystic fibrosis subjects. Pediatr. Res., 19, 676–679

    Article  PubMed  CAS  Google Scholar 

  82. Pedersen, P. S., Brandt, N. J. and Larsen, E. H. (1986). Qualitatively abnormal beta-adrenergic response in cystic fibrosis sweat duct cell culture. IRCS Med. Sci., 14, 701–702

    Google Scholar 

  83. Quinton, P. M. (1983). Chloride permeability in cystic fibrosis. Nature (London), 301, 421–422

    Article  CAS  Google Scholar 

  84. Knowles, M. R., Stutts, M. J., Spock, A., Fischer, N. L., Gatzy, J. T. and Boucher, R. C. (1983). Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science, 221, 1067–1070

    Article  PubMed  CAS  Google Scholar 

  85. Widdicombe, J. H., Welsh, M. J. and Finkbeiner, W. E. (1985). Cystic fibrosis decreases the apical membrane chloride permeability of monolayers cultured from cells of tracheal epithelium. Proc. Natl. Acad. Sci. USA, 82, 6167–6171

    Article  PubMed  CAS  Google Scholar 

  86. Boucher, R. C., Cheng, E. H. C., Paradiso, A. M., Stutts, M. I., Knowles, M. R. and Earp, H. S. (1989). Chloride secretory response of cystic fibrosis human airway epithelia. J. Clin. Invest., 84, 1424–1431

    Article  PubMed  CAS  Google Scholar 

  87. Rommens, J. M., Iannuzzi, M. C., Kerem, B., Drumm, M. L., Melmer, G., Dean, M., Rozmahel, R., Cole, J. L., Kennedy, D., Hidaka, N., Zsiga, M., Buchwald, M., Riordan, J. R., Tsui, L-C and Collins, F. S. (1989). Identification of the cystic fibrosis gene: chromosome walking and jumping. Science, 245, 1059–1065

    Article  PubMed  CAS  Google Scholar 

  88. Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grezelczak, Z., Zielenski, J., Lok, S., Plavsic, N., Chou, J-L., Drumm, M. L., Iannuzzi, M. C., Collins, F. S. and Tsui, L-C. (1989). Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science, 245, 1066–1073

    Article  PubMed  CAS  Google Scholar 

  89. Kerem, B., Rommens, J. M., Buchanan, J. A., Markiewicz, D., Cox, T. K., Chakravarti, A., Buchwald, M. and Tsui, L-C. (1989). Identification of the cystic fibrosis gene: genetic analysis. Science, 245, 1073–1080

    Article  PubMed  CAS  Google Scholar 

  90. Tamaoki, J., Ueki, I. F., Widdicombe, J. H. and Nadel, J. A. (1988). Stimulation of Cl secretion by Neurokinin A and Neurokinin B in canine tracheal epithelium. Am. Rev. Respir. Dis., 137, 899–902

    PubMed  CAS  Google Scholar 

  91. Leikauf, G. D., Ueki, I. F., Nadel, J. A. and Widdicombe, J. H. (1985). Bradykinin stimulates Cl secretion and prostaglandin E2 release by canine tracheal epithelium. Am. J. Physiol., 248 (Renal Fluid Electrolyte Physiol., 17), F48–F55

    PubMed  CAS  Google Scholar 

  92. Al-Bazzaz, F. J., Kelsey, J. G. and Kaage, W. D. (1985). Substance P stimulation of chloride secretion by canine tracheal mucosa. Am. Rev. Respir. Dis., 131, 86–89

    PubMed  CAS  Google Scholar 

  93. Leikauf, G. D., Ueki, I. F., Widdicombe, J. H. and Nadel, J. A. (1986). Alteration of chloride secretion across canine tracheal epithelium by lipoxygenase products of arachidonic acid. Am. J. Physiol., 250 (Renal Fluid Electrolyte Physiol., 19), F47–F53

    PubMed  CAS  Google Scholar 

  94. Pratt, A. D., Clancy, G. and Welsh, M. J. (1986). Mucosal adenosine stimulates chloride secretion in canine tracheal epithelium. Am. J. Physiol., 251 (Cell Physiol., 20), C167–C174

    PubMed  CAS  Google Scholar 

  95. Jacoby, D. B., Ueki, I. F., Widdicombe, J. H., Loegering, D. A., Gleich, G. J. and Nadel, J. A. (1988). Effect of human eosinophil major basic protein on ion transport in dog tracheal epithelium. Am. Rev. Respir. Dis., 137, 13–16

    Article  PubMed  CAS  Google Scholar 

  96. Williamsen, N. J., Davis, C. W. and Boucher, R. C. (1989). Celluar Cl transport in cultured cystic fibrosis airway epithelium. Am. J. Physiol., 256 (Cell Physiol., 25), C1045–C1053

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Smith, J.J. (1990). Regulation of Ion Channels in Cultured Airway Epithelial Cells. In: Jones, C.J. (eds) Epithelia. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3905-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3905-2_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5739-4

  • Online ISBN: 978-94-011-3905-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics