Skip to main content

The Effect of Prosthesis Orientation on’ stress-Shielding’ using Finite Element Analysis — Indications as to Bone Remodeling

  • Chapter
  • 189 Accesses

Abstract

’stress shielding’ in the proximo-medial femur after hip replacement is studied for different prosthesis stem orientations (valgus — neutral — varus). Both axial and hoop stresses are reported for each case. Results are shown to compare favourably with strain gauge studies. It is predicted that valgus orientated stems create greater axial stress changes and varus orientated stems create greater hoop stress changes. The clinical practice of prosthesis insertion is discussed. Finally the results are analysed in the context of a proposed damage model for bone adaption. It is proposed that the hoop stress has greater significance for the’ stress shielding’ concept than its smaller magnitude would suggest.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huiskes R., Weinans H., Grootenboer H.J., Dalstra M., Fudala B., Slooff T.J., Adaptive Bone Remodeling Theory Applied to Prosthetic Design Analysis, J. Biomechanics. 20, 1135–1150, 1987

    Article  CAS  Google Scholar 

  2. Prendergast P.J., Taylor D., A Stress Analysis of the Proximo-Medial femur after Total Hip Replacement, J.Biomed.Eng. in press

    Google Scholar 

  3. Muller M.E., Late Complications in total hip replacement, Proc.3rd Sci.Mtg. Hip Soc., C.V. Mosby Co. 319-327, 1974

    Google Scholar 

  4. Amstutz H.C., Marklof K.L., McNeice G.M., Gruen T.A., Loosening of Total Hip Components: cause and prevention, Proc. 4th Sci.Mtg. of the Hip Soc., St. Loius, C.V., Mosby Co., 102-116, 1976

    Google Scholar 

  5. McBeath A.A., Foltz R.N., Femoral Component loosenind after Total Hip Arthroplasty. Clin.Orthop.Rel.Res. 141, 66–70, 1979

    Google Scholar 

  6. McBeath A.A., Schopler S.A., Seireg A.A., Circumferential and Longitudnal Strain in the Proximal Femur as determined by Prosthesis Type and Position, p.36, Trans. 25th O.R.S., San Francisco, California, 1979

    Google Scholar 

  7. Moreland J.R., Gruen T.A., Mai L., Amstutz H.C., Aseptic loosening of Total Hip Replacement: incidence and significance, Proc.6th Sci.Mtg. Hip Soc. 281–291, 1980

    Google Scholar 

  8. Carlsson A.S., Gentz C-F., Mechanical Looseninf of the Femoral Head Prosthesis in Charnley Total Hip Arthroplasty, Clin., Orthop. Rel. Res., 147. 262–270, 1980

    Google Scholar 

  9. Bocco F., Langan P., Charnley J., Changes in the Calcar Femoris in Relation to Cement Technology in Total Hip Replacement, Clin. Orthop. Rel. Res. 128, 287–295,1977

    Google Scholar 

  10. Fowler J.L., Gie G.A., Lee A.J.C., Ling R.S.M., Experience with the Exeter Total Hip Replacement since 1970, Orthopaedic Clinics of North America. 19, 477–489, 1989

    Google Scholar 

  11. Taylor D., Prendergast P.J., Mathematical Modeling in Implant Design: Stress Analysis and Material Selection, in Current Perspectives in Implantable Devices. 2, JAI Press, (Ed D.F. Williams}) in press

    Google Scholar 

  12. Huiskes R., Chao E.Y.S., A Survey of Finite Element Analysis in Orthopaedic Biomechanics, J. Biomechanics. 16, 385–409, 1983

    Article  CAS  Google Scholar 

  13. PAFEC User Manual, PAFEC Ltd., Strelly Hall, Nottingham, England.

    Google Scholar 

  14. Prendergast P.J., Monaghan J., Taylor D., Materials Selection in the Artificial Hip Joint using Finite Element Analysis, Clinical Materials. 4, 361–376, 1939

    Article  Google Scholar 

  15. Huiskes R., Some Fundamantal Aspects of Human Joint Replacement, Acta Orthop. Scand. Suplement no. 185, 1979

    Google Scholar 

  16. Paul J.P., Approaches to Design-Forces Transmitted by Joints in the Human Body. Proc.R.Soc.Lond. B. 192. 163–172, 1976

    Article  CAS  Google Scholar 

  17. Oh I., Harris W.H., Proximal Strain Distribution in the Loaded Femur, J. Bone Joint Surg., 60A, 75–85, 1978

    Google Scholar 

  18. Fagan M.J., Lee A.J.C., Role of the Collar on the Femoral Stem of Total Hip Replacements. J. Biomed. Eng., 8, 295–304, 1986

    Article  CAS  Google Scholar 

  19. Burr D.B., Martin R.B., Schaffler M.B., Radin E.L., Bone remodeling in response to in vivo fatigue microdamage, J. Biomechanics. 18. 189–200, 1985

    Article  CAS  Google Scholar 

  20. Reilly D.T., Burnstein A.H., The elastic and ultimate properties of bone tissue, J.Biomechanics, 8, 393–405, 1975

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Prendergast, P.J., McCormack, B., Gunawardhana, T., Taylor, D. (1991). The Effect of Prosthesis Orientation on’ stress-Shielding’ using Finite Element Analysis — Indications as to Bone Remodeling. In: Williams, K.R., Toni, A., Middleton, J., Pallotti, G. (eds) Interfaces in Medicine and Mechanics—2. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3852-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3852-9_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-583-9

  • Online ISBN: 978-94-011-3852-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics