Advertisement

Upgrading of Pyrolysis Oils by Hydrotreatment

Chapter

Abstract

Bio-oil can be produced by high-pressure, low-temperature liquefaction in a liquid-solid phase system or by moderate-temperature pyrolysis in a gas-solid phase system at ambient pressure. Both processes give an oxygenated product. While this liquid can be utilised directly in some applications, stabilisation or upgrading is needed to produce material that is compatible with conventional hydrocarbon fuels and can be used in applications based on these fuels. This chapter describes the technology and status of hydrotreating—one of the technologies being developed for upgrading.

Keywords

Hydrogen Donor Heavy Fraction Hydrogen Consumption Smoke Point Flash Pyrolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Elliott, D. C. & Baker, E. G. In Energy from Biomass and Wastes X, ed. D. L. Klass. IGT, Chicago, 1987, p. 765.Google Scholar
  2. 2.
    Baker, E. G. & Elliott, D. C. In Research in Thermochemical Biomass Conversion, ed. A. V. Bridgwater & J. L. Kuester. Elsevier Applied Science, London and New York, 1988, p. 883.Google Scholar
  3. 3.
    Knight, J. Pyrolysis as a Basic Technology for Large Agro-Energy Projects, 15–17 October 1987, L’Aquila, Italy.Google Scholar
  4. 4.
    Scott, D. & Piskorz, J., Can. J. Chem. Eng., 62 (1982) 404.CrossRefGoogle Scholar
  5. 5.
    Diebold, J. In Specialists’ Workshop on Fast Pyrolysis of Biomass, 19–22 October 1980, Copper Mountain, Colorado, USA, p. 237.Google Scholar
  6. 6.
    Roy, C., de Caumia, D., Blanchette, D., Lemieux, R. & Kaliaguine, S. In Energy from Biomass and Wastes IX, ed. D. L. Klass. IGT, Chicago, 1985, p. 1085.Google Scholar
  7. 7.
    Churin, E., Grange, P. & Delmon, B., EEC Contract EN3B-0097-B, Fuel Report.Google Scholar
  8. 8.
    Gevert, B., PhD thesis, Chalmers University of Technology, Gothenburg, Sweden, 1987.Google Scholar
  9. 9.
    Nelte, A. & Meier zu Köcker, H. In Proc. Int. Congress, Euroforum New Energies, Saarbrücken, FRG, Vol. 3, Stephens and Associates, UK, 1988, p. 673.Google Scholar
  10. 10.
    Soltes, E. J., Lin, S.-C. K., Sheu, Y.-H. E., Amer. Chem. Soc., Div. Fuel Chem., Prepts, 37(2) (1987), 229.Google Scholar
  11. 11.
    Soltes, E. J. & Lin, S.-C. K., Biotech. and Bioeng. Symp., 13 (1983) 53.Google Scholar
  12. 12.
    Deno, N., Petersen, H. & Sainer, G. S., Chem. Rev., 60(1) (1960) 7.CrossRefGoogle Scholar
  13. 13.
    Burton, A., De Zutter, D., Poncelet, G., Grange, P. & Delmon, B., EEC Contract ESE-R-033-B (1986), Final Report.Google Scholar
  14. 14.
    Churin, E., Grange, P. & Delmon, B. Paper presented at EEC Biomass Contractors’ Meeting, 25–27 May 1988, Paestum, Italy.Google Scholar
  15. 15.
    Ratcliff, M. A., Johnson, D. K., Posey, F. L., Maholland, M. A., Cowley, S. W. & Chum, H. L. In Research in Thermochemical Biomass Conversion, ed. A. V. Bridgwater & J. L. Kuester. Elsevier Applied Science, London and New York, 1988, p. 941.Google Scholar
  16. 16.
    Callant, M., MSc thesis, Université Catholique de Louvain, 1988.Google Scholar
  17. 17.
    Baker, E. & Elliott, D., Amer Chem. Soc., Div. Fuel Chem., Prepts, 32(2) (1987) 257.Google Scholar

Copyright information

© ECSC, EEC, EAEC, Brussels and Luxembourg 1991

Authors and Affiliations

  1. 1.Unité de Catalyse et Chimie des Matériaux DivisésUniversité Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations