Skip to main content

Properties and Applications of Silicon Carbide Ceramics

  • Chapter
Silicon Carbide Ceramics—1

Abstract

Silicon carbide is a promising candidate for high-temperature structural materials and wear-resistant materials. We have developed pressureless-sintered silicon carbide ceramics. The properties, applications and related technologies of silicon carbide ceramics are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Tanaka, Report for Research of High Purity Silicon Carbide. National Institute for Research in Inorganic Materials, 1967, p. 4.

    Google Scholar 

  2. Sumitomo Aluminium Smelting Co. Ltd, US Patent 4,562,040, 1985.

    Google Scholar 

  3. Udagawa, S., Yanagida, H. & Sudo, G., Inorganic silicon compounds as fine chemicals. Kodansha, Tokyo, Japan, 1982, p. 154.

    Google Scholar 

  4. Enomoto, R., Beta-silicon carbide powder ‘Betarundum’. Industrial Rare Metals, 73 (1980), 178.

    Google Scholar 

  5. Okabe, Y., Hojo, J. & Kato, A., ‘Formation of silicon carbide powders by the vapor phase reaction of the SiH4-CH4-H2 system. J. Chem. Soc. Japan, (1980), 188.

    Google Scholar 

  6. Okabe, Y., Hojo, J. & Kato, A., Formation of fine silicon carbide powders by a vapor phase method. J. Less-Common Met., 68 (1979), 29.

    Article  CAS  Google Scholar 

  7. Yajima, S. & Okamura, K. Science, 11 (1981), 79.

    Google Scholar 

  8. Hase, T. & Suzuki, H., Properties of submicron β-SiC prepared from siliconization of carbon black. J. Ceram. Soc. Japan, 86 (1978), 541.

    CAS  Google Scholar 

  9. Ando, Y. et al., Preparation of ultrafine particles of refractory metal carbides by a gas-evaporation method. J. Cryst. Growth, 52 (1981), 178.

    Article  CAS  Google Scholar 

  10. Alliegro, R. A. et al., Pressure-sintered silicon carbide. J. Am. Ceram. Soc., 39 (1956), 386.

    Article  CAS  Google Scholar 

  11. Nadeau, J. S., Very high pressure hot pressing of silicon carbide. Am. Ceram. Soc. Bull., 52 (1973), 170.

    CAS  Google Scholar 

  12. Prochazka, S., GE Report, SRD-72-035, 1972.

    Google Scholar 

  13. Prochazka, S. & Smith, P. C., Investigation of ceramics for high-temperature turbine vanes. GE Report SRD-74-040, 1974.

    Google Scholar 

  14. Kennecott Corporation, US Patent 4,312,954, 1982.

    Google Scholar 

  15. Schwetz, K. A. & Lipp, A., Science of Ceramics, 10 (1979), 149.

    Google Scholar 

  16. Suzuki, K. & Sasaki, M., Pressureless sintering of silicon carbide. Presented at Japan-U.S. Seminar on Fundamental Structural Ceramics, 1984., ed S. Sōmiya & R. C. Bradt. Terra Science Publishing Co, 1987, pp. 75–87.

    Google Scholar 

  17. Prochazka, S., Sintering of silicon carbide. Materials Science Research, 9. Plenum Press, New York, 1975, p. 421.

    Google Scholar 

  18. Greskovich, C. & Rosolowski, J. H., Sintering of covalent solids. J. Am. Ceram. Soc., 59 (1976), 336.

    Article  CAS  Google Scholar 

  19. Suzuki, H. & Hase, T., Some experimental consideration on the mechanism of pressureless sintering of silicon carbide., Proc. of Internl. Symp. of Factors in Densification and Sintering of Oxide and Non-oxide Ceramics, Gakujutsu Bunken Fukyu-kai, Tokyo, Japan, 1978, p. 345.

    Google Scholar 

  20. Lange, F. F. & Gupta, T. K., Discussions and notes, Sintering of SiC with boron compounds. J. Am. Ceram. Soc., 59 (1976), 537.

    Article  CAS  Google Scholar 

  21. Inomata, Y., Uemura, Y. & Inoue, S., Energy stored in a grain boundary formed by a rotation along a hexagonal lattice plane in SiC crystals. J. Ceram. Soc. Japan, 88 (1980), 628.

    CAS  Google Scholar 

  22. Houg, J. D., Davis, R. F. & Newbury, D. E., Self-diffusion of silicon-30 in α-SiC single crystals. J. Mater. Sci., 16 (1981), 2485.

    Article  Google Scholar 

  23. Asaga, K. & Hamano, K., Initial sintering kinetics of compacts of spherical alumina particles. J. Ceram. Soc. Japan, 83 (1975), 136.

    CAS  Google Scholar 

  24. Böcker, W. & Hausner, H., The influence of boron and carbon additions on the microstructure of sintered alfa silicon carbide. Powder Metal. Int., 10 (1978), 87.

    Google Scholar 

  25. Suzuki, K., Relation between microstructure and fracture toughness of ceramics. Bull. Ceram. Soc. Japan, 21 (1986), 590.

    CAS  Google Scholar 

  26. Kato, K. & Kawabata, N., Relations between properties of diamond wheel and surface roughness on machining of ceramics. FC Report, 4 (1986), 10.

    Google Scholar 

  27. Griffith, A. A., Phil. Trans. R. Soc. Lond., 221A (1920), 1631.

    Google Scholar 

  28. Takeda, Y. & Nakamura, K., Proceedings of the 23rd Japan Congress of Materials Research, The Society of Materials Science, Kyoto, Japan, 1980, p. 215.

    Google Scholar 

  29. Yokobori, T., Strength, fracture and fatigue of materials, 2nd edition. Iwanami, 1974.

    Google Scholar 

  30. Niishata, K. & Hira, T., Super-fine microstructure and toughness of ceramics. Bull. Ceram. Soc. Japan, 21 (1986), 598.

    Google Scholar 

  31. Nakayama, J. & Abe, H., Thermal properties and thermal stress fracture of ceramics. Zhityo, 32 (1983), 685.

    Google Scholar 

  32. Slack, G. A., Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids, 34 (1973), 321.

    Article  CAS  Google Scholar 

  33. Maeda, K., Takeda, Y., Nakamura, K. & Ura, M., Grain boundaries of SiC ceramics with high thermal conductivity and high electrical resistivity, Bull. Ceram. Soc. Japan, 18 (1983), 217.

    CAS  Google Scholar 

  34. Maruyama, M., Developments for advanced ceramics in USA and Europe. Nikkei Mechanical, 28 June (1985), 58.

    Google Scholar 

  35. Toriyama, A. & Takesa, K., Axial ceramics fan for high temperature use. Turbomachinery, 13 (1985), 485.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Yamada, K., Mohri, M. (1991). Properties and Applications of Silicon Carbide Ceramics. In: Sömiya, S., Inomata, Y. (eds) Silicon Carbide Ceramics—1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3842-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3842-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-560-0

  • Online ISBN: 978-94-011-3842-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics