A Distributed Control Network for Sensory Robotics

  • A. T. de Almeida
  • U. C. Nunes
  • J. M. Dias
  • H. J. Araujo
  • J. Batista
Part of the Microprocessor-Based Systems Engineering book series (ISCA, volume 6)


Sensor-based robots can increase significantly the scope of applications of robots in manufacturing namely for flexible assembly. This paper describes the development of a robotic system used for the evaluation of sensory integration techniques and real-time path control strategies. The robotic system has a distributed hierarchical architecture, featuring vision, force, tactile, range and proximity sensors. The approaches for integration of the sensorial information are discussed.


Robotic System Digital Signal Processor Multisensor Integration Proximity Sensor Seam Tracking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P.M. Taylor, G.E. Taylor, I. Halleron and X.K. Song, ‘Analysis of a probabilistic framework for an intelligent workcell’, Nato Asi Series, Vol F.64 on Sensory robotics for the handling of limp materials, P.M. Taylor Ed, Springer-Verlag, 1990, pp.275–297.Google Scholar
  2. [2]
    B.R. Donald, Error detection and recovery in robotics, Springer-Verlag, 1989.Google Scholar
  3. [3]
    A. Goldenberg and L. Chan, ‘An approach to real-time control of robots in task space. Application to control of PUMA 560 without VAL-II’, IEEE Trans.Ind. Electron. 35,(2) (May 1988) 231–238.CrossRefGoogle Scholar
  4. [4]
    B.E. Shimano, ‘A robot programming system incorporating real-time and supervisory control: VAL-II’, Proc.Robots 8, 1984.Google Scholar
  5. [5]
    The Bitbus interconnect serial control bus specification, in: Distributed Control Modules Databook, Intel Corporation, 1984, pp.100–147.Google Scholar
  6. [6]
    T. Lozano-Perez.‘A simple motion-planning algorithm for general robot manipulators’, IEEE Journ.of Rob. Autom., RA-3,(3) (June 1987) 224–238.Google Scholar
  7. [7]
    L. Sa, J. M. Dias and V. Silva, ‘A modular approach to image processing through the VMEbus’, I VMEbus Research Conference, Zurich, 1988.Google Scholar
  8. [8]
    V. Silva and L. Sá, ‘ACTIVE — Sistema para aquisição em computador e transmissão de imagens video’, 3° Simposio de Electronica das Telecomunicaçöes, Porto, 4-6 May 1988 (in Portuguese).Google Scholar
  9. [9]
    J.M. Dias and L. Sa, ‘Modulo de processamento digital de imagem com microprocessador de sinal’, 3° Simpósio de Electronica das Telecomunicaçöes, Porto, 4-6 May 1988 (in Portuguese).Google Scholar
  10. [10]
    J. P. Batista, J. Dias, H. Araújo and A. Traça de Almeida, ‘Biblioteca de Programas para Processamento de imagem’ 3° Simpósio de Electrónica das Telecomunicaqoes, Porto, 4-6 May 1988 (in Portuguese).Google Scholar
  11. [11]
    J. P. Batista, J. Dias, H. Araújo and A. Traça de Almeida, ‘Análise quantitativa dos métodos de calibração de câmaras de video’, 3° Encontro Portugues de Reconhecimento de Padrōes, Aveiro, Feb. 1991 (in Portuguese).Google Scholar
  12. [12]
    G. Toscani, ‘Systeme de Calibration optique et perception du mouvement en Vision artificielle’, PhD thesis, Paris-Orsay, 1987.Google Scholar
  13. [13]
    O.D. Faugeras and G. Toscani, ‘The calibration problem for stereo’, IEEE Proc. CVPR’86, Miami Beach, Fl., 1986, pp. 15–20.Google Scholar
  14. [14]
    J.M. Mendel, ‘Lessons in Digital Estimation Theory’, Prentice-Hall, 1987.Google Scholar
  15. [15]
    U. Nunes, J. Dias and A.T. Almeida,‘Geometric modeling aspects on vision and ultrasonic range sensing for robotic applications’, NATO ASI on Expert Systems and Robotics, Greece, July 1990.Google Scholar
  16. [16]
    J. Silvestre, A. Mendes, L. Sá and V. Silva,‘Frame Grabber com capacidade de processamento para PC-AT’, Internal Technical Report, DEE-University of Coimbra, 1990 (in Portuguese).Google Scholar
  17. [17]
    Y. Xu, R.P. Paul and P. Corke,‘Hybrid position force control of robot manipulator with an instrumented compliant wrist’, First Int.Symp. on Experimental Robotics I, Springer-Verlag, Eds. V. Hayward and O. Khatib, 1990, pp. 244–270.Google Scholar
  18. [18]
    S. Hirose and K. Yoneda,‘Development of optical 6-axial force sensor and its signal calibration considering non-linear interference’, IEEE Int.Conf.Rob.Autom, 1990, pp. 46–53.Google Scholar
  19. [19]
    R.P. Paul,‘Problems and research issues associated with the hybrid control of force and displacement’, IEEE Int.Conf.RobAutom., 1987, pp.1966–1971.Google Scholar
  20. [20]
    J. Dietrich, G. Hirzinger, B. Gombert and J. Schottet,‘On a unified concept for a new generation of light-weight robots’, First Int.Symp. on Experimental Robotics I, Springer-Verlag, Eds. V. Hayward and O. Khatib, 1990, pp.287–303.Google Scholar
  21. [21]
    C.H. An and J. Hollerback, ‘Dynamic stability issues in force control of manipulators’, IEEE Int.Conf.Rob.Autom., 1987, pp. 890–896.Google Scholar
  22. [22]
    C.H. An, C. Atkeson and J. Hollerback, ‘Model-based control of a direct drive arm, PartII:Control’, IEEE Int.Conf.RobAutom., 1988, pp. 1386–1391.Google Scholar
  23. [23]
    T.H Speeter,‘A tactile sensing system for robotic manipulation’, Int.Journ.Rob. Research, 9(6) (December 1990) 25–36.Google Scholar
  24. [24]
    B. Tise,‘A compact high resolution piezoresistive digital tactile sensor’, IEEE Int.Conf.RobAutom., 1988, pp.760–764.Google Scholar
  25. [25]
    B. Maqueira, C. Umeagukwu and J. Jarzynski,‘Application of ultrasonic sensors to robotic seam tracking’, IEEE Trans.Robot.autom, 5 (June 1989) 337–343.CrossRefGoogle Scholar
  26. [26]
    K. Furuta and M. Sampei, ‘Path control of a three-dimensional linear motional mechanical system using laser’, IEEE Trans.Ind.Electron., 35(1) (Feb. 1988) 52–59.CrossRefGoogle Scholar
  27. [27]
    B. Espiau and J.Y. Catros, ‘Use of optical reflectance in robotics applications’, IEEE Trans.Syst.Man Cybern. 10(12) (December 1980) 903–912.CrossRefGoogle Scholar
  28. [28]
    U. Nunes, P. Faia, R. Araójo and A.T. Almeida, ‘Integração de informação de proximidade numa céllula robótica de montagem’, Proc. RECPAD 91, Portugal, 1991 (in Portuguese).Google Scholar
  29. [29]
    C. Wampler,‘Multiprocessor control of a telemanipulator with spatial proximity sensors’, IntJoum.Rob.Research, 6(1) (Spring 1984) 40–50.Google Scholar
  30. [30]
    R.C. Luo and M.G. Kay, ‘Multisensor Integration and Fusion in Intelligent Systems’, IEEE Trans, on Sys, Man, and Cyb., 19(5), (Sep./Oct. 1989), 901–931.CrossRefGoogle Scholar
  31. [31]
    H.F. Durrant-Whyte, ‘Integrated, coordenation and control of multi-sensor robot system’, Kluwer Acad.Publ., 1988.Google Scholar
  32. [32]
    R. Smith, M. Self, and P. Cheeseman, ‘Estimating Uncertainty Spatial Relationships in Robotics’, in Autonomous Robot Vehicles, I.J. Cox & G.T. Wilfong Eds, Springer-Verlag, 1990.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • A. T. de Almeida
    • 1
  • U. C. Nunes
    • 1
  • J. M. Dias
    • 1
  • H. J. Araujo
    • 1
  • J. Batista
    • 1
  1. 1.Electrical Engineering DeptUniversity of CoimbraCoimbraPortugal

Personalised recommendations