Skip to main content

Principles of Cardiac MR imaging

  • Chapter
  • 75 Accesses

Part of the book series: Series in Radiology ((SERA,volume 22))

Abstract

Nuclear Magnetic Resonance (NMR) spectroscopy was discovered around 1945 as a method to determine the magnetic properties of atomic nuclei. In 1952, the Nobel Prize was awarded to Bloch and Purcell for their independent work in developing NMR. It is still successfully applied as a tool in molecular physics and chemistry, revealing molecular structures, chemical reaction rates and diffusion processes. In biochemistry, NMR has made contributions to elucidating the structure of cell membranes, nucleic acids, proteins and viruses. Especially interesting from the medical point of view are in vivo proton, phosphorus and carbon spectra.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Section Four References

Textbooks

  • Abragam A: Principle of Nuclear Magnetism. Oxford University Press, 1961

    Google Scholar 

  • Esser PD, Johnston RE: Technology of Nuclear Magnetic Resonance. The Society of Nuclear Medicine Inc., 1984

    Google Scholar 

  • Farrar TC, Becker ED: Pulse and Fourier Transform NMR. Academic Press, 1971

    Google Scholar 

  • Foster MA, Hutchinson JMS: Practical NMR Imaging. IRL Press, 1987

    Google Scholar 

  • Gadian DG: Nuclear Magnetic Resonance and Its Applications to Living Systems. Oxford University Press, 1982

    Google Scholar 

  • Jackson DF: Imaging with Non-ionizing Radiations, Vol. 2. Surrey University Press, 1983

    Google Scholar 

  • Mansfield P, Morris PG: NMR Imaging in Biomedicine. Academic Press, 1982

    Google Scholar 

  • Mc Cready VR, Leach M, Ell PJ: Functional Studies Using NMR. Pringer-Verlag, 1986

    Google Scholar 

  • Morris PG: Nuclear Magnetic Resonance Imaging in Medicine. Clarendon Press, 1986

    Google Scholar 

  • Petersen SB, Muller RN, Rinck PA: An Introduction to Biomedical Nuclear Magnetic Resonance. Georg Thieme Verlag, 1985

    Google Scholar 

  • Rinck PA, Petersen SB, Muller RN: An Introduction to Magnetic Resonance in Medicine. Georg Thieme Verlag, 1990

    Google Scholar 

  • Shaw D: Fourier Transform NMR Spectroscopy. Elsevier, 1984

    Google Scholar 

  • Slichter CP: Principles of Magnetic Resonance. Springer-Verlag, 1978

    Google Scholar 

  • Wehrli FW, Shaw D, Kneeland JB: Biomedical Magnetic Resonance Imaging. Principle, Methodology, and Applications. VCH Publishers, 1988

    Google Scholar 

Book chapters

  • Axel L, Morton D: Flow effects in magnetic resonance imaging. American Association of Physicists in Medicine1985 Summer School. The Portland University. 315–327, 1985

    Google Scholar 

  • Brown MS, Gore JC: MR relaxation in tissue. American Association of Physicists in Medicine1985 Summer School. The Portland University. 189–202, 1985

    Google Scholar 

  • Dobson KG: Magnet design and technology for MR imaging. American Association of Physicists in Medicine1985 Summer School. The Portland University. 93–110, 1985

    Google Scholar 

Review articles

  • Alfidi RJ, et al: MR angiography of peripheral, carotid and coronary arteries. AJR149: 1097–1109, 1987

    PubMed  CAS  Google Scholar 

  • Bailes DR, et al: Respiratory ordered phase encoding (ROPE). Society of Magnetic Resonance in Medicine1985: 939

    Google Scholar 

  • Bradley GW: Sorting out the meaning of MRI flow phenomena. Diagn Imag Inter 05/1987: 102–111

    Google Scholar 

  • Edelman RR, et al: New spinal MR strategies overcome motion artifacts. Diagn Imag Inter 12/1987: 86–92

    Google Scholar 

  • Frahm J, et al: Flow suppression in rapid FLASH NMR images. Magn Reson Med4: 372–377, 1987

    PubMed  CAS  Google Scholar 

  • Haacke E, et al: Reducing motion artifacts in two-dimensional Fourier transform imaging. Magn. Reson Imag4: 359–376, 1986

    CAS  Google Scholar 

  • Haase A: Snapshot FLASH MRI. Applications to Tl, T2 and chemical shift imaging. Magn Reson Med13: 77– 89, 1990

    PubMed  CAS  Google Scholar 

  • Handley P: Magnets for medical applications of NMR. British Medical Bulletin 40: 125–131, 1984

    Google Scholar 

  • Hendrick RE, et al: Maximizing signal-to-noise and contrast-to-noise ratios in FLASH imaging. Magn Reson Imaging5: 117–127, 1987

    PubMed  CAS  Google Scholar 

  • Henkelman RM, et al: Artifacts in magnetic resonance imaging. Rev of Magn Reson Med2 (1): 1–126, 1987

    Google Scholar 

  • Hould D, et al: Mechanisms of contrast in NMR imaging. J Comput Assist Tomogr8: 369–380, 1984

    Google Scholar 

  • Kraft KA, et al: MR imaging of model fluid velocity profiles. Magn Reson Imaging7: 69–77, 1989

    PubMed  CAS  Google Scholar 

  • Lanzer P, et al: ECG-synchronized cardiac MR imaging: method and evaluation. Radiology155: 681–686, 1985

    PubMed  CAS  Google Scholar 

  • Libove JM, et al: The signal-to-noise relationships in NMR imaging in the human body. J Phys E13: 38–43, 1980

    PubMed  CAS  Google Scholar 

  • Mansfield P: Real-time echo-planar imaging by NMR. British Medical Bulletin40: 187–190, 1984

    PubMed  CAS  Google Scholar 

  • Mills TC, et al: Partial flip angle MR imaging. Radiology162: 531–539, 1987

    PubMed  CAS  Google Scholar 

  • Mitsuaki Arakawa BS: Advanced engineering and design expand utility of RF coils. Diagn Imag Intern1986: 133–146

    Google Scholar 

  • Riederer SJ, et al: MR fluoroscopy:technical feasibility. Magn Reson Med8: 1–15, 1988

    PubMed  CAS  Google Scholar 

  • Tkack JA, et al: A comparison of fast spin echo and gradient field echo sequences. Magn Reson Imaging6: 373–389, 1988

    Google Scholar 

  • Unger EC: Partial flip angle imaging finds broader clinical use. Diagn Imag Intern 03/1988: 102–107

    Google Scholar 

  • Van Dijk P: Direct cardiac NMR imaging of heart wall and blood flow velocity. J Comput Assist Tomogr8: 429–436, 1984

    PubMed  Google Scholar 

  • Van Der Meulen, et al: Very fast MR imaging by field echoes and small angle excitations. Magn Reson Imaging3: 297–299, 1985

    PubMed  Google Scholar 

  • Van Der Meulen, et al: Fast field echo imaging: An overview and contrast calculation. Magn Reson Imaging6: 355–368, 1988

    PubMed  Google Scholar 

  • Van Wedeen J, et al: MR velocity imaging by phase display. J Comput Assist Tomogr9 (3): 530–536, 1985

    PubMed  CAS  Google Scholar 

  • Wehrli FW: Time-of-flight effects in MR imaging of flow. Magn Reson Med14: 187–193, 1990

    PubMed  CAS  Google Scholar 

  • Wood ML, et al: Optimization of spoiler gradients in FLASH MRI. Magn Reson Imaging5: 455–463, 1987

    PubMed  CAS  Google Scholar 

  • Young IR: considerations affecting signal and contrast in NMR imaging. British Medical Bulletin 40: 139–147,1984

    Google Scholar 

  • Young IR, et al: Clinical magnetic susceptibility mapping of the brain. J Comput Assist Tomogr11 (1): 2–6, 1987

    PubMed  CAS  Google Scholar 

  • Yuan C, et al: Flow-induced effects and compensation technique for slice-selective pulses. Magn Reson Med9: 161–176, 1989

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Depré, C., Melin, J.A., Wijns, W., Demeure, R., Hammer, F., Pringot, J. (1991). Principles of Cardiac MR imaging. In: Atlas of Cardiac MR Imaging with Anatomical Correlations. Series in Radiology, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3784-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3784-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5685-4

  • Online ISBN: 978-94-011-3784-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics