Skip to main content

Droplet Size and Dynamics in Water in Oil Microemulsions. Correlations Between Results from Time-Resolved Fluorescence Quenching, Quasielastic Light Scattering, Electrical Conductivity and Water Solubility Measurements

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 324))

Abstract

The effect of the oil, surfactant and alcohol chain length, of the temperature, and of the alcohol concentration on the water droplet size and interdroplet interaction in water-in-oil (w/o) microemulsions has been investigated by time-resolved fluorescence quenching, quasielastic light scattering, electrical conductivity and water solubility (partial phase behavior). The results obtained with these different methods correlate perfectly well and indicate increases in droplet size and interdroplet attractive interactions as the oil(alkane) chain length and the temperature increase and as the surfactant and alcohol chain length and alcohol concentration decrease, in agreement with the predictions of recent theories of the stability of w/o microemulsions. The rate constant ke associated with the exchange of material between droplets upon collisions with transient merging was found to be at least equal to or larger than (l–2) × 109 M−1s−1 for all of the systems where electrical percolation occurred upon increase of the fraction of disperse phase or temperature. This requirement indicates that above the percolation threshold the high electrical conductivity is due to the motion of counterions through water channels and/or fusion between droplets in droplet clusters, rather than to hopping of surfactant ions between droplets upon droplet collisions. The results also show that from the variation of the electrical conductivity with any of the parameters which characterize the microemulsion one can predict qualitatively the resulting variations of droplet size, interdroplet attractive interactions, and rate of exchange of material between droplets via droplet collisions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lang, J., Jada, A. and Malliaris, A. (1988) “Structure and dynamics of water-in-oil droplets stabilized by sodium bis(2-ethylhexyl)sulfosuccinate”, J. Phys. Chem. 92, 1946–1953.

    Article  CAS  Google Scholar 

  2. Jada, A., Lang, J. and Zana, R. (1989) “Relation between electrical percolation and rate constant for exchange of material between droplets in water-in-oil microemulsions”, J. Phys. Chem.93, 10–12.

    Article  CAS  Google Scholar 

  3. Jada, A., Lang, J. and Zana, R. (1990) “Ternary water-in-oil microemulsions made of cationic surfactants, water, and aromatic solvents. 1. Water solubility studies”, J. Phys. Chem. 94, 381–387.

    Article  CAS  Google Scholar 

  4. Jada, A., Lang, J., Zana, R., Makhloufi, R., Hirsch, E. and Candau, S.J. (1990) “Ternary water-in-oil microemulsions made of cationic surfactants, water, and aromatic solvents. 2. Droplet sizes and interactions and exchange of material between droplets”, J. Phys. Chem. 94, 387–395.

    Article  CAS  Google Scholar 

  5. Lang, J., Mascolo, G., Zana, R., Luisi, P.L. (1990) “Structure and dynamics of cetyltrimethylammonium bromide water-in-oil microemulsions”, J. Phys. Chem. 94, 3069–3074.

    Article  CAS  Google Scholar 

  6. Lang, J. (1990) “The time-resolved fluorescence quenching method for the study of micellar systems and microemulsions: Principle and limitations of the method”, this volume.

    Google Scholar 

  7. Zana, R. (1987) “Luminescence probing methods”, in R. Zana (ed.), Surfactant Solutions: New Methods of Investigation, Marcel Dekker, New-York, pp 241–294.

    Google Scholar 

  8. Atik, S.S. and Thomas, J.K. (1981) “Transport of photoproduced ions in water in oil microemulsions: movement of ions from one water pool to another”, J. Am. Chem. Soc. 103, 3543–3550.

    Article  CAS  Google Scholar 

  9. Pfeffer, G., Lami, H., Laustriat, G. and Coche, A. (1963)“Détermination des constantes de temps de scintillateurs”, C.R.Hebd. Séances Acad. Sci. 257, 434–437.

    Google Scholar 

  10. Infelta, P.P., Grätzel, M. and Thomas, J.K. (1974) “Luminescence decay of hydrophobic molecules solubilized in aqueous micellar systems. A kinetic model”, J. Phys. Chem. 78, 190–195.

    Article  CAS  Google Scholar 

  11. Tachiya, M. (1975) “Application of a generating function to reaction kinetics in micelles. Kinetics of quenching of luminescent probes in micelles”, Chem. Phys. Lett. 33, 289–292.

    Article  CAS  Google Scholar 

  12. Atik, S.S., Nam, M. and Singer, L. (1979) “Transient studies on intramicellar excimer formation. A useful probe of the host micelle”, Chem. Phys. Lett. 67, 75–80.

    Article  CAS  Google Scholar 

  13. Atik, S.S. and Thomas, J.K. (1981) “Transport of ions between water pools in alkanes”, Chem. Phys. Lett. 79, 351–354.

    Article  CAS  Google Scholar 

  14. Dederen, J.C. and Van der Auweraer, M. and De Schryver, F.C. (1979) “Quenching of 1-methylpyrene by Cu2+ in sodium dodecylsulfate. A more general kinetic model”, Chem. Phys. Lett. 68,451–454.

    Article  CAS  Google Scholar 

  15. Grieser, F. and Tausch-Treml, R. (1980) “Quenching of pyrene fluorescence by single and multivalent metal ions in micellar solutions”, J. Am. Chem. Soc. 102, 7258–7264.

    Article  CAS  Google Scholar 

  16. Dederen, J.C, Van der Auweraer, M. and De Schryver, F.C. (1981)“Fluorescence quenching of solubilized pyrene and pyrene derivatives by metal ions in SDS micelles”, J. Phys. Chem. 85,1198–1202.

    Article  CAS  Google Scholar 

  17. Grieser, F. (1981) “The dynamic behaviour of I in aqueous dodecyltrimethylammonium chloride solutions. A model for counter-ion movement in ionic micellar systems”, Chem. Phys. Lett. 83, 59–64.

    Article  CAS  Google Scholar 

  18. Löfroth, J.-E. and Almgren, M. (1982) “Quenching of pyrene fluorescence by alkyl iodides in sodium dodecyl sulfate micelles” J. Phys. Chem. 86, 1636–1641.

    Article  Google Scholar 

  19. Croonen, Y., Geladé, E., Van der Zegel, M., Van der Auweraer, M.,Vandendriessche, H., De Schryver, F.C. and Almgren, M. (1983)“Influence of salt, detergent concentration and temperature on the fluorescence quenching of 1-methylpyrene in sodium dodecyl sulfate with m-dicyanobenzene”, J. Phys. Chem. 87, 1426–1431.

    Article  CAS  Google Scholar 

  20. Malliaris, A., Lang, J., Sturm, J. and Zana, R. (1987)“Intermicellar migration of reactants: effect of additions of alcohols, oils and electrolytes”, J. Phys. Chem. 91, 1475–1481.

    Article  CAS  Google Scholar 

  21. Fletcher, P.D.I. (1988) “Time-resolved fluorescence study of the structure and dynamics of the cubic Il lyotropic mesophase of dodecyltrimethylammonium chloride”, Mol. Cryst. Liq. Cryst. 154,323–333.

    Article  CAS  Google Scholar 

  22. Luo, H., Boens, N., Van der Auweraer, M., De Schryver, F.C. and Malliaris, A. (1989) “Simulations analysis of time-resolved fluorescence quenching data in aqueous micellar systems in the presence and absence of added alcohol”, J. Phys. Chem. 93, 3244–3250.

    Article  CAS  Google Scholar 

  23. Lang, J., Zana, R. and Candau, S. (1987) “Study of intermicellar migration through reactions of fragmentation-coagulation. Dynamics of micellar systems”, Ann. Chim. (Rome), 77, 103–115.

    CAS  Google Scholar 

  24. Almgren, M., Löfroth, J.-E. and Van Stam, J. (1986) “Fluorescence decay kinetics in monodisperse confinements with exchange of probes and quenchers”, J. Phys. Chem. 90, 4431–4437.

    Article  CAS  Google Scholar 

  25. Almgren, M., Van Stam, J., Swarup, S. and Löfroth, J.-E. (1986) “Structure and transport in the microemulsion phase of the system Triton X-100-toluene-water”, Langmuir, 2, 432–438.

    Article  CAS  Google Scholar 

  26. Hou, M.J., Kim, M. and Shah, D.O. (1988) “A light scattering study on the droplet size and interdroplet interaction in microemulsions of AOT-oil-water system”, J. Colloid Interface Sci. 123, 398–412.

    Article  CAS  Google Scholar 

  27. Hou, M.J. and Shah, D.O. (1987) “Effects of the molecular structure of the interface and continuous phase on solubilization of water in water/oil microemulsions”, Langmuir, 3, 1086–1096.

    Article  CAS  Google Scholar 

  28. Leung, R. and Shah, D.O. (1987) “Solubilization and phase equilibria of water-in-oil microemulsions. 1. Effects of spontaneous curvature and elasticity of interfacial films”, J. Colloid Interface Sci. 120, 320–329.

    Article  Google Scholar 

  29. Lemaire, B., Bothorel, P. and Roux, D. (1983) “Micellar interactions in water-in-oil microemulsions. 1. Calculated interaction potential”, J. Phys. Chem. 87, 1023–1028.

    Article  CAS  Google Scholar 

  30. Brunetti, S., Roux, D., Bellocq, A.M., Fourche, G. and Bothorel, P.(1983) “Micellar interactions in water-in-oil microemulsions”,J. Phys. Chem. 87, 1028–1034.

    Article  CAS  Google Scholar 

  31. Huang, J.S., Safran, S.A., Kim, M.W., Grest, G.S., Kotlarchyk, M.and Quinke, N. (1984) “Attractive interactions in micelles and microemulsions”, Phys. Rev. Lett. 53, 592–595.

    Article  CAS  Google Scholar 

  32. Huang, J.S. (1985) “Surfactant interactions in oil continuous microemulsions”, J. Chem. Phys. 82, 480–484.

    Article  CAS  Google Scholar 

  33. Mukherjee, S., Miller, C.A. and Fort, Jr., M. (1983) “Theory of drop size and phase continuity in microemulsions. 1. Bending effects with uncharged surfactants”, J. Colloid Interface Sci. 91,223–243.

    Article  CAS  Google Scholar 

  34. Chatenay, D., Urbach, W., Cazabat, A.M. et Langevin, D. (1985) “Onset of droplet aggregation from self-diffusion measurements in microemulsions”, Phys. Rev. Lett. 54, 2253–2256.

    Article  CAS  Google Scholar 

  35. Bansal, V.K., Shah, D.O. and O’Connell, J.P. (1980) “Influence of alkyl chain length compatibility on microemulsion structure and solubilization”, J. Colloid Interface Sci. 75, 462–475.

    Article  CAS  Google Scholar 

  36. Lalem, N., Lang, J. and Zana, R. (1990) “Quaternary water-in-oil microemulsions. 1. Effect of alcohol chain length and concentration on droplet size and exchange of material between droplets” in preparation.

    Google Scholar 

  37. Atik, S.S. and Thomas, J.K. (1981) “Abnormally high ion exchange in pentanol microemulsions compared to hexanol microemulsions”, J. Phys. Chem. 85, 3921–3924.

    Article  CAS  Google Scholar 

  38. Leung, R. and Shah, D.O. (1987) “Solubilization and phase equilibria of water-in-oil microemulsions. 2. Effects of alcohols, oils, and salinity on single-chain surfactant systems”, J. Colloid Interface Sci. 120, 330–344.

    Article  Google Scholar 

  39. Roux, D., Bellocq, A.M. and Bothorel, P. (1984) “Effect of the molecular structure of components on micellar interactions in microemulsions”, in K.L. Mittal and B. Lindman (eds.), Surfactants in Solution, Plenum Press, New York, pp. 1843–1865.

    Google Scholar 

  40. Geiger, S. and Eicke, H.F. (1986) “The macro fluid concept versus the molecular mixture: A spin-echo-NMR study of the water/Aerosol OT/oil system”, J. Colloid Interface Sci. 110, 181–187.

    Article  CAS  Google Scholar 

  41. Dutkiewicz, E. and Robinson, B.H. (1988) “The electrical conductivity of a water-in-oil microemulsion system containing an ionic surfactant. Part I. Temperature effect”, J. Electroanal. Chem. 251, 11–20.

    Article  CAS  Google Scholar 

  42. Hilfiker, R., Eicke, H.F., Geiger, S. and Furler, G. (1985) “Optical studies of critical phenomena in macrofluid like three component microemulsions”, J. Colloid Interface Sci. 105, 378–387.

    Article  CAS  Google Scholar 

  43. Bhattacharya, S., Stockes, J.P., Kim, M.W. and Huang, J.S. (1985) “Percolation in an oil-continuous microemulsion”, Phys. Rev. Lett. 55,1884–1887.

    Article  CAS  Google Scholar 

  44. Matthew, C., Patanjali, P.K., Nabi, A. and Maitra, A. (1988) “On the concept of percolative conduction in water-in-oil microemulsions”, Colloids Surf. 30, 253–263.

    Google Scholar 

  45. Fletcher, P.D.I. and Robinson, B.H. (1981) “Dynamic processes in water-in-oil microemulsions”, Ber. Bunsen-Ges. Phys. Chem. 85, 863–867.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lang, J., Zana, R., Lalem, N. (1990). Droplet Size and Dynamics in Water in Oil Microemulsions. Correlations Between Results from Time-Resolved Fluorescence Quenching, Quasielastic Light Scattering, Electrical Conductivity and Water Solubility Measurements. In: Bloor, D.M., Wyn-Jones, E. (eds) The Structure, Dynamics and Equilibrium Properties of Colloidal Systems. NATO ASI Series, vol 324. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3746-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3746-1_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5666-3

  • Online ISBN: 978-94-011-3746-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics