Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 117))

  • 76 Accesses

Summary

In health coronary blood flow is automatically regulated at the level of small vessels to adjust flow to changes in perfusion pressure and myocardial oxygen demand. Coronary disease is associated with the occurrence of flow limiting resistance in the epicardial (large) arteries which is partly fixed and dynamic depending on the relative contributions of atherona, thrombosis and constriction and which causes the myocardial ischaemia seen in the various clinical presentations. There are many mediators of normal control mechanisms and pathological coronary responses; some are recently discovered such as the vasoactive peptides and some have been known for many years but their relevance has been clarified by recent research.

Neuropeptide Y is a sympathetic neurotransmitter which constricts small coronary vessels and, in the experimental situation, causes a flow reduction sufficient to induce myocardial ischaemia without any effect on the larger coronary arteries. Its effect is mainly direct through post junctional NPY receptors, Endothelin is the most potent vasoconstrictor peptide yet discovered, released from endothelial cells with a very long duration of action; its role remains to be elucidated. Vasopressin, a circulating vasoconstrictor peptide released from the pituitary gland, is important in the maintenance of blood pressure following acute haemorrhage and is used to reduce bleeding from eosophageal varices. Occasional reports of vasopressin induced myocardial ischaemia exist. The circulating renin angiotensin system provides a rapid homeostatic response to acute changes in blood pressure and fluid and electrolyte status and may operate on a local tissue level. The kallikrein kinin system is activated in septicaemic and endotoxic shock producing marked vasodilatation and hypotension which can be attenuated by a bradykinin antagonist. Somatostation is widespread in the body; it inhibits the release of growth hormone and insulin and selectively reduces portal venous pressure during intravenous infusion, possibly by inhibition of gut vasodilator peptides. Calcitonin gene related peptide and substance P are both dilator neurotransmitter peptides found in human heart, the former long acting and the latter short acting. Atrial natriuretic factor is a peptide produced locally in the atria of human hearts and regulates blood volume by responding to atrial distension.

It is clear that the control of the circulation is complex and involves peptide hormones and neurotransmitters. This realisation has served to stimulate much research in cardiovascular control mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vatner SF, Franklin DK, Van Citters RL, Braunwald E: Effects of carotid sinus nerve stimulation on the coronary circulation of the conscious dog. Circ Res 27: 11–21, 1970.

    Article  PubMed  CAS  Google Scholar 

  2. Furchgott RF and Zawadzki JV: The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetyl choline. Nature Lond 268: 373–376, 1980.

    Article  Google Scholar 

  3. Davies MJ, Thomas A: Thrombosis and acute coronary artery lesions in sudden cardiac ischemic death. N Engl J Med 310: 1137–1140, 1984.

    Article  PubMed  CAS  Google Scholar 

  4. Clarke JG, Davies GJ, Kerwin R, Hackett D, Larkin S, Lee Y, Dawbarn D, Bloom SR, Yacoub M, Maseri A: Coronary artery infusion of neuropeptide Y in patients with angina pectoris. Lancet 1: 1057–1059, 1987.

    Article  PubMed  CAS  Google Scholar 

  5. Clarke J, Larkin S, Osinawa O, Davies GJ, Taylor K, Maseri A: Neuropeptide Y reduces dog coronary blood flow by increased small vessel resistance. Clin Sci 73: 6, 1987.

    Google Scholar 

  6. Clarke J, Larkin S, Benjamin N, Davies G, Maseri A: The effect of neuropeptide Y on sympathetic vasoconstriction in human forearm resistance vessels. Eur Heart J 9: 12p, 1988.

    Google Scholar 

  7. Yanigasawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T: A novel potent vasoconstrictor peptide produced by vascular endotheha cells. Nature 332: 411–415, 1988.

    Article  Google Scholar 

  8. Clarke JG, Benjamin N, Larkin SW, Webb DJ, Keogh BE, Davies GJ, Maseri A: Endothelin is a potent long-lasting vasoconstrictor in man. Am J Physiol (Heart Circ Physiol 26) 257: H2033–2035, 1989.

    CAS  Google Scholar 

  9. Bayliss PH: Osmoregulation and control of vasopressin secretion in healthy humans. Am J Physiol 253: R671–R678, 1987.

    Google Scholar 

  10. Sachs H, Share L, Osinchak J, Carpi A: Capacity of the neurohypophysim to release vasopressin. Endocrinology 81: 755–770, 1967.

    Article  PubMed  CAS  Google Scholar 

  11. Ebert TJ, Cowley Jr JW, Skelton M: Vasopressin reduces cardiac function and augments cardiopulmonary baroreflex resistance increases in man. J Clin Invest 77: 1136–1142, 1986.

    Article  PubMed  CAS  Google Scholar 

  12. Sirinek KR et al: High dose vasopressin for acute variceal haemorrhage. Clinical advantages without adverse effects. Arch Surg 1232: 876–880, 1988.

    Article  Google Scholar 

  13. Glazier JJ, Gavias H, Mills RM, Ruocco NA, Bresnahan M, Ryan TJ: Effect of inhibition or arginine vasopressin on systemic and coronary haemodynamics. JACC 13: 172A, 1989.

    Google Scholar 

  14. Conn HO: A plethora of therapies. In: Westaby D, Macdougall B, Williams R, eds. Variceal bleeding. Pitman Medical, London, 1982: 221–52.

    Google Scholar 

  15. Campbell DJ: Tissue renin-angiotensin system: sites of angiotensin formation. J Cardiovasc Pharmacol 10 (suppl 7): 81–8, 1987.

    Article  Google Scholar 

  16. Swales JD: Arterial wall or plasma renin in hypertension? Clin Sci 565: 293–298, 1979.

    Google Scholar 

  17. Bosch J, Kravetz DK, Rodes J: Effects of somatostatin on hepatic and systemic haemodynamics in patients with cirrhosis. Gastroenterology 80: 518–525, 1981.

    PubMed  CAS  Google Scholar 

  18. McEwan JR, Benjamin N, Larkin S, Fuller RW, Dollery CT, Maclntyre I, Maseri A: Vasodilatation by calcitonin gene-related peptide and substance P: a comparison of their effects on resistance and capacitance vessels of human forearms. Circulation 77: 1072–1080, 1988.

    Article  PubMed  CAS  Google Scholar 

  19. McEwan J, Larkin S, Davies G, Chierchia S, Brown M, Stevenson J, MacIntyre I, Maseri A; Calcitonin gene-related peptide: a potent dilator of human epicardial coronary arteries. Circulation 74: 1243–1247, 1986.

    Article  PubMed  CAS  Google Scholar 

  20. von Euler US, Gaddum JH: An unidentified depresssor substance in certain tissue extracts. J Physiol (LOnd) 72: 74–87, 1931.

    Google Scholar 

  21. Bolton TB, Clapp LH: Endothelial dependent relaxant actions of carbachol and substance P in arterial smooth muscle. Br J Pharmacol 87: 713–723, 1986.

    Article  PubMed  CAS  Google Scholar 

  22. Crossman DC, Larkin SW, Fuller RW, Davies GJ, Maseri A: Substance P dilates epicardial coronary arteries and increases coronary blood flow in humans, Circulation. In Press. 1989.

    Google Scholar 

  23. de Bold AJ, Borenstlen HB, Veress AT, Sonnenberg H: A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rat. Life Sci 28: 89–94, 1981.

    Article  PubMed  Google Scholar 

  24. Currie MG, Geller DM, Cole BR: Purification and sequence analysis of bioactive atrial peptides (atriopeptins). Science 223: 67–69, 1984.

    Article  PubMed  CAS  Google Scholar 

  25. Edwards BS, Ackerman DM, Lee ME, Reeder GS, Wold LE, Burn JC: Identification of atrial natriuretic factor within ventricular tissue in hamsters and humans with congestive cardiac failure. J Clin Invest 81: 82–86, 1988.

    Article  PubMed  CAS  Google Scholar 

  26. Ellenbogen KA, Mohanty PK, Sowers JR, Walsh M, Thamas MD: Atrial natriuretic factor release is enhanced by incremental atrial pacing. Am Heart J 226: 489–496, 1988.

    Article  Google Scholar 

  27. Tsai R-C, Yamaji T, Ishibashi M, Takaku F, Pang S-C, Yeh S-J, Lee Y-S, Hung J-S, Delon W: Atrial natriuretic peptide during supraventricular tachycardia and relation to haemodynamic changes and renal function. Am J Cardiol 61: 1260–1264, 1988.

    Article  PubMed  CAS  Google Scholar 

  28. Mullins RJ, Hudgens RW: Increased skin lymph protein clearance after a 6 hr arterial bradykinin infusion. Am J Physiol 253: H1462–H1469, 1987.

    PubMed  CAS  Google Scholar 

  29. Aasen AO, Smith-Erichsen N, Amundsen E: Plasma kallikrein-kinin system in septicaemia. Arch Surg 118: 343–345, 1983.

    Article  PubMed  CAS  Google Scholar 

  30. Weipert J, Hoffman H, Siebeck M, Whalley ET: Attenuation of arterial blood pressure fall in endotoxin shock in the rat using the competitive bradykinin antagonist Lys-Lys-[Hyp2, Thi5, 8, dPhe7] — BkB4148). Br J Pharmacol 94: 282–284, 1988.

    Article  PubMed  CAS  Google Scholar 

  31. De Pasquale NP, Burch GE: Digital vascular responses to intra-arterial injections of bradykinin, kallidin and eledoisin in man. Circulation 34: 211–217, 1966.

    Article  Google Scholar 

  32. Nakano J: Effects of synthetic bradykinin on the cardiovascular system. Arch Int Pharmacodyn Ther 157: 1–13, 1965.

    PubMed  CAS  Google Scholar 

  33. Needleman P, Key SL, Denny SE, Isakson PC, Marshall GR: The mechanism and modification of bradykinin-induced coronary vasodilatation. Proo Nat Acad Sci USA 72: 2060–2063, 1975.

    Article  CAS  Google Scholar 

  34. Muller-Esterl W, Fritz H: Human kininogens and their function in the kallilrein-kinin system. In Proteases: Potential role in health and disease, ed. WH Horl, Heildland A, New York: Plenum Publishing Corp. 1, 1984: 284–290.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Davies, G.J. (1991). Peptides and the circulation. In: Reiber, J.H.C., Serruys, P.W. (eds) Quantitative Coronary Arteriography. Developments in Cardiovascular Medicine, vol 117. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3726-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3726-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5656-4

  • Online ISBN: 978-94-011-3726-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics