Skip to main content

Laser Balloon Angioplasty (LBA)

  • Chapter

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 117))

Summary

A laser balloon catheter/delivery system has been developed to test the hypotheses that the combination of appropriate levels of heat and pressure during balloon inflation will improve luminal dimensions and morphology to a greater extent than the application of pressure alone as well as mitigate adverse biologic responses to mechanical injury. Experimentally, the conditions under which fusion of separated tissue layers of the atheromatous arterial wall can be achieved have been defined, and proposed beneficial effects on arterial recoil and intraluminal thrombus have been demonstrated. Recent clinical studies suggest that LBA improves coronary luminal dimensions over those achievable with initial PTC A by these mechanisms. Improved laser diffusing tip technology and continued laser dosimetry studies will be required to determine whether adverse biologic responses can be reduced by LBA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leimgruber PP, Roubin GS, Anderson V, Bredlau CB, Whitworth HB, Douglas JS Jr, King SB III, Gruentzig AR: Influence of intimal dissection on restenosis after successful coronary angioplasty. Circulation 72: 530–535, 1985.

    Article  PubMed  CAS  Google Scholar 

  2. Beatt KJ, Luijten HE, Suryapranata H, Feyter PJde, Serruys PW: Suboptimal post angioplasty result. The principle risk factor for “restenosis”. Circulation 80 (Suppl II): II–257, 1989. (Abstract)

    Google Scholar 

  3. Gomes OM, Macruz R, Armelin E, Ribeiro MP, Brum JMG, Bittencourt D, Verginelli G, Zerbini EJ: Vascular anastomosis by argon laser beam. Texas Heart Inst J 10: 145–149, 1983.

    CAS  Google Scholar 

  4. Frazier OH, Painvin A, Morris JR, Thomsen S, Neblett CR: Laser-assisted microvascular anastomoses: Angiographic and anatomopathologic studies on growing microvascular anastomoses: Preliminary report. Surgery 97: 585–590, 1985.

    PubMed  CAS  Google Scholar 

  5. Quigley MR, Bailes JE, Kwaan HC, Cerullo LJ, Brown JT, Lastre C, Monma D: Microvascular anastomosis using the milliwatt C02 laser. Lasers Surg Med 5: 357–365, 1985.

    Article  PubMed  CAS  Google Scholar 

  6. Klink F, Grosspietzch R, von Klitzing L, Endell W, Wolfdietrich H., Obertheurer F: Animal in-vivo studies and m-vitro experiments with human tubes for end-to-end anastomotic operation by a CO2 laser technique. Fertil Steril 30:100–102, 1978.

    PubMed  CAS  Google Scholar 

  7. Jain KK, Gorsich W: Repair of Small blood vessels with the Neodymium-YAG laser:A preliminary report. Surgery 85: 864–868, 1979.

    Google Scholar 

  8. White RA, Kopchok G, Donayre C, Abergel RP, Lyons R, Klein SR, Dwyer RM, Uitto J: Comparison of laser-welded and sutured arteriotomies. Arch Surg 121: 1133–1135, 1986.

    Article  PubMed  CAS  Google Scholar 

  9. White RA, White GH, Fujitani RM, Vlasak JW, Donayre CE, Kopchok GE, Peng SK: Initial human evaluation of argon laser-assisted vascular anastomoses. J Vase Surg 9: 542–547, 1989.

    CAS  Google Scholar 

  10. Jain KK: Sutureless end-to-side microvascular anastomosis with a Nd-YAG laser. Lasers Surg Med 3: 311–316, 1984.

    Google Scholar 

  11. Sigel B, Dunn MR: The mechanism of blood vessel closure by high frequency electrocoagulation. Surg Gyn and Obst 121: 823–831, 1965.

    CAS  Google Scholar 

  12. Sigel B, Acevedo FJ: Electrocoaptive union of blood vessels: A preliminary experimental study. J Surg Res: III-90–96, 1963.

    Google Scholar 

  13. Schober R, Ulrich F, Sander T, Durselen H. Hessels S: Laser-induced alteration of collagen substructure allows microsurgical tissue welding. Science 232: 1421–1422, 1986.

    Article  PubMed  CAS  Google Scholar 

  14. Hiehle JF, Bourgelais DBC, Shapshay S, Schoen FJ, Kim DS, Spears JR: Nd:YAG laser fusion of human atheromatous plaque-arterial wall separations in vitro. Am J Cardiol 56: 953–957, 1985.

    Article  PubMed  Google Scholar 

  15. Jenkins RD, Sinclair IN, Anand R, Kalil AG, Frederick JS, Spears JR: Laser balloon angioplasty: Effect of tissue temperature on weld strength of human postmortem intima-media separations. Lasers Surg Med 8: 30–39, 1988.

    Article  PubMed  CAS  Google Scholar 

  16. Anand RK, Sinclair IN, Jenkins RD, JF Hiehle, Jr., James LM, Spears JR: Laser balloon angioplasty: Effect of constant temperature versus constant power on tissue weld strength. Laser Sur Med 8: 40–44, 1988.

    Article  CAS  Google Scholar 

  17. Jenkins RD, Sinclair IN, Anand RK, James LM, Spears JR: Laser balloon angioplasty: Effect of exposure duration on shear strength of welded layers of postmortem human aorta. Lasers Surg Med 8: 392–396, 1988.

    Article  PubMed  CAS  Google Scholar 

  18. Spears JR, James LM, Leonard BM, Sinclair IN, Jenkins RD, Motamedi M, Sinofsky EL: Plaque-media rewelding with reversible tissue optical property changes during repetitive cw Nd: YAG laser exposure. Lasers Surg Med 8: 477–485, 1988.

    Article  PubMed  CAS  Google Scholar 

  19. Sinclair IN, Anand RK, Kalil AG, Jr., Schoen FJ, Bourgelais D, Spears JR: Laser balloon angioplasty: Factors affecting plaque-arterial wall thermal “weld” strength. Circulation 74: 11–203, 1986. (Abstract)

    Google Scholar 

  20. Henriques FC, Moritz AR: Studies of thermal injury, I. the conduction of heat to and through skin and the temperature attained therein. A theoretical and experimental investigation. Am. J. Pathol., 23: 531, 1947.

    Google Scholar 

  21. Danielsen CC: Precision method to determine denaturation temperature of collagen using ultraviolet difference spectroscopy. Coll Relat Res 2: 143–150, 1982.

    Article  PubMed  CAS  Google Scholar 

  22. Hauschka PV, Harrington WF: Collagen structure in solution. III Effect of cross-links on thermal stability and refolding kinetics. Biochemistry: 3734–3745, 1970.

    Google Scholar 

  23. Jenkins RD, Sinclair IN, McCall PE, Schoen FJ, Spears JR: Thermal sealing of arterial dissections and perforations in atherosclerotic rabbits with laser balloon angioplasty. Lasers in Life Sciences 3:1–18, 1989.

    Google Scholar 

  24. Fischell TA, Derby G, Tse TM, Stadius ML: Coronary artery vasoconstriction routinely occurs after percutaneous transluminal coronary angioplasty. A quantitative arterriogra-phic analysis. Circulation 78:1323–1334, 1989.

    Article  Google Scholar 

  25. Nobuyoshi M, Kimura M, Nosaka H, Mioka S, Ueno K, Yokoi H, Hamasaki N, Horiuchi H, Ohishi H: Restenosis after successful percutaneous transluminal coronary angioplasty: Serial angiographic follow-up of 229 patients. J Am Coll Cardiol 12: 616–623, 1988.

    PubMed  CAS  Google Scholar 

  26. Serur JR, Sinclair IN, Spokojny AM, Paulin S, Spears JR: Laser balloon angioplasty (LBA): Effect on the carotid lumen in the dog. Circulation 72: III-457, 1985 (Abstract).

    Google Scholar 

  27. Jenkins RD, Sinclair IN, Leonard BM, Sandor T, Schoen FJ, Spears JR: Laser balloon angioplasty versus balloon angioplasty in normal rabbit iliac arteries. Lasers Surg Med 9: 237–247, 1989.

    Article  PubMed  CAS  Google Scholar 

  28. Spears JR, Sinclair IN, Jenkins RD: Laser balloon angioplasty: Experimental in vivo and in vitro studies. Abela GS (ed), Kluwer Academic Publishers, Nowell, Mass, 1989: 167– 188.

    Google Scholar 

  29. Login GR, Dvorak AM: Microwave energy fixation for electron microscopy. Am J Pathol 120:230–243, 1985.

    PubMed  CAS  Google Scholar 

  30. Spears JR, Dear WE, Safian RD, Sinclair IN, Pokker HWM, Aldridge H, Knudtson ML, Sigwart U, Rickards AF, and the LBA Study Group: Laser balloon angioplasty: angiographic results of a multicenter trial. Circulation 80 (Suppl II): 11–476, 1989 (Abstract).

    Google Scholar 

  31. Sinclair IN, Dear WE, Safian RD, Pokker TM, Spears JR, and the LBA Study Group: Acute closure post PTCA successfully treated with laser balloon angioplasty. Circulation 80 (Suppl II): 11–476, 1989 (Abstract).

    Google Scholar 

  32. Spears JR, Reyes VP, Wynne J, Fromm BS, Sinofsky EL, Andrus S, Sinclair IN, Hopkins BE, Schwartz L, Aldridge HE, Plokker HWT, Mast EG, Rickards A, Knudtson ML, Sigwart U, Dear WE, Ferguson JJ, Angelini P, Leatherman LL, Safian RD, Jenkins RD, Douglas J, King III SB: Percutaneous coronary laser balloon angioplasty: Initial results of a multicenter experience. J Am Coll Cardiol 16: 293–303, 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Spears, J.R. (1991). Laser Balloon Angioplasty (LBA). In: Reiber, J.H.C., Serruys, P.W. (eds) Quantitative Coronary Arteriography. Developments in Cardiovascular Medicine, vol 117. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3726-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3726-3_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5656-4

  • Online ISBN: 978-94-011-3726-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics