Skip to main content

A global approach to molecular chirality

  • Chapter

Part of the book series: Understanding Chemical Reactivity ((UCRE,volume 5))

Abstract

The three-dimensional arrangements of molecular fragments that may or may not lead to molecular chirality are subject to quantum mechanical uncertainty and to a more significant uncertainty due to the non-rigid nature of molecules. Molecular chirality is an energy dependent property: if sufficient energy is available, then no molecule can retain its chiral properties since rearrangement and decomposition reactions may take place at a significant rate. In a rigorous model, it is impossible to separate the problems of chirality from energetic considerations and from explicitly taking into account the deformability of molecules. This underlines the importance of the global chirality properties of a whole range of formal nuclear arrangements. In a global approach to the problems of molecular chirality, it appears worthwhile to consider the nuclear configuration space approach where all possible arrangements of a given stoichiometric family of nuclei are considered. Such a stoichiometric family includes all isomers, intermediates and decomposition products of all molecules and their transition structures with a given atomic composition, as well as all distorted conformations of the above. The global approach leads to the recognition of several rules on the presence of stable chiral nuclear configurations within families of nuclear arrangements, on the facility of configuration inversion and racemization processes, and on chirality changes due to electronic excitation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.H. van ‘t Hoff,Bull. Soc Chim. Fr. 23, 295 (1875)

    Google Scholar 

  2. P. Curie, J. Phys.(Paris), 3, 393 (1894)

    Google Scholar 

  3. R.S. Cahn, C.K. Ingold and V. Prelog, Angew. Chem., Internat. Ed. Engl.5385 (1966).

    CAS  Google Scholar 

  4. E. Ruch and A. Schönhofer, Theor. Chim. Acta1091 (1968).

    Article  CAS  Google Scholar 

  5. E. Ruch, Theor. Chim. Acta11183 (1968).

    CAS  Google Scholar 

  6. R.W. Robinson, F. Harary and A.T. Balaban, The numbers of chiral and achiral alkanes and monosubstituted alkanes. Tetrahedron 32, 355 (1976).

    Article  CAS  Google Scholar 

  7. D.J. Klein and A.H. Cowley, J. Am. Chem. Soc.1002593 (1978).

    Article  CAS  Google Scholar 

  8. R.L. Flurry Jr., J. Am. Chem. Soc.,103, 2901 (1981).

    Article  CAS  Google Scholar 

  9. E. Ruch and D.J. Klein, Theor. Chim. Acta 63, 447 (1983).

    CAS  Google Scholar 

  10. F.A.L. Anet, S.S. Miura, J. Siegel and K. Mislow, J. Am. Chem. Soc.1051419 (1983).

    Article  CAS  Google Scholar 

  11. K. Mislow and J. Siegel, J. Am. Chem. Soc.1063319 (1984).

    Article  CAS  Google Scholar 

  12. D.M. Walba, Stereochemical Topology, in Chemical Applications of Topology and Graph Theory, Ed. R.B. King, Elsevier, Amsterdam, 1983.

    Google Scholar 

  13. D.M. Walba, Tetrahedron413161 (1985).

    Article  CAS  Google Scholar 

  14. P.G. Mezey, J. Amer. Chem. Soc.108,3976 (1986).

    Article  CAS  Google Scholar 

  15. P.G. Mezey, Topology of Molecular Shape and Chirality, in New Theoretical Concepts for Understanding Organic Reactions, J. Bertrán and LG. Csizmadia (Eds.), Kluwer Academic Publ., Dordrecht,1989, pp 77–99.

    Chapter  Google Scholar 

  16. P.G. Mezey, Potential Energy Hypersurfaces. Elsevier, Amsterdam, 1987.

    Google Scholar 

  17. P.G. Mezey, J. Amer. Chem. Soc.112,3791 (1990).

    Article  CAS  Google Scholar 

  18. P.G. Mezey, Theor. Chim. Acta, 63, 9 (1983).

    CAS  Google Scholar 

  19. P.G. Mezey, Int. J. Quantum Chem.26,983 (1984).

    Article  CAS  Google Scholar 

  20. E.B. Wilson Jr., J.C. Decius, and P.C. Cross, Molecular Vibrations, McGraw-Hill, New York, 1955.

    Google Scholar 

  21. R.A. Marcus, J. Chem. Phys.45,4493 (1966).

    Article  CAS  Google Scholar 

  22. J.N. Murrell and K. Laidler, Trans. Faraday Soc.,64, 371 (1968)

    Article  CAS  Google Scholar 

  23. J.N. Murrell and G.L. Pratt, Trans. Faraday Soc.,66, 1680 (1970).

    Google Scholar 

  24. K. Fukui, J. Phys. Chem.74,4161 (1970).

    Article  CAS  Google Scholar 

  25. D.G. Truhlar and A. Kuppermann, J.Amer. Chem. Soc., 93, 1840 (1971).

    Article  Google Scholar 

  26. P. PechukasJ.Chem.Phys.641516 (1976).

    CAS  Google Scholar 

  27. P.G. Mezey, Progr. Theor. Org. Chem.2,127 (1977).

    CAS  Google Scholar 

  28. A. Tachibana and K. Fukui, Theor. Chim. Acta49,321 (1978).

    Article  CAS  Google Scholar 

  29. A. Tachibana and K. Fukui, Theor. Chim. Acta51,189 (1979).

    Article  CAS  Google Scholar 

  30. K. Müller, Angew. Chem. Int. Ed.19,1 (1980).

    Article  Google Scholar 

  31. W.H. Miller, N.C. Handy, and J.E. Adams, J. Chem. Phys.72,99 (1980).

    Article  CAS  Google Scholar 

  32. P.G. Mezey, Theor. Chim. Acta58,309 (1981).

    Article  CAS  Google Scholar 

  33. P.G. Mezey, Reaction Topology and Quantum Chemical Molecular Design on Potential Surfaces, in New Theoretical Concepts for Understanding Organic Reactions, J. Bertrán and I.G. Csizmadia (Eds.), Kluwer Academic Publ., Dordrecht,1989, pp 55–76.

    Chapter  Google Scholar 

  34. P.G. Mezey, Differential and Algebraic Topology of Chemical Potential Surfaces, Chapter 19, in “Mathematics and Computational Concepts in Chemistry” Ed. N. Trinajstic, Ellis Horwood Publ. Co., Chichester, U.K., 1986, pp 208–221.

    Google Scholar 

  35. C.A. Cayley, Philos. Mag.18,264 (1859).

    Google Scholar 

  36. J.C. Maxwell, Philos. Mag.40,233 (1870).

    Google Scholar 

  37. M.R. Hoare, Adv. Chem. Phys.,40, 49 (1979).

    Article  CAS  Google Scholar 

  38. P.G. Mezey, Theor. Chim. Acta67,115 (1985).

    Article  CAS  Google Scholar 

  39. E.H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.

    Google Scholar 

  40. LM. Singer and J.A. Thorpe, Lecture Notes on Elementary Topology and Geometry, Springer-Verlag, New York, 1976.

    Book  Google Scholar 

  41. P.G. Mezey, From Geometrical Molecules to Topological Molecules: A Quantum Mechanical View, in Molecules in Physics, Chemistry and Biology, Vol. II, J. Maruani, (Ed.), Reidel, Dordrecht, 1988, pp 61–81.

    Chapter  Google Scholar 

  42. P.G. Mezey, Theor. Chim. Acta73,221 (1987).

    Article  Google Scholar 

  43. J. Maruani and P.G. Mezey, Compt. Rend. Acad. Sci. (Paris)305,SerII, 1051, (1987)306,Serll, 1141, (1988).

    Google Scholar 

  44. P.G. Mezey and J. Maruani, Mol. Phys.69,97 (1990).

    Article  CAS  Google Scholar 

  45. P.G. Mezey, J. Math. Chem., in press (1990).

    Google Scholar 

  46. P.G. Mezey,Int. J. Quant. Chem., in press (1990).

    Google Scholar 

  47. P.G. Mezey, Fivefold Symmetry in the Context of Potential Surfaces, Molecular Conformations and Chemical Reactions, in “Quasicrystals, Networks, and Molecules with Fivefold Symmetry”, Ed. L Hargittai, VCH Publishers, New York, 1990, pp 223–238.

    Google Scholar 

  48. L.A. Zadeh, Theory of Fuzzy Sets, in Encyclopedia of Computer Science and Technology, Marcel Dekker, New York, 1977.

    Google Scholar 

  49. A. Kaufmann, Introduction ¨¤ la Th¨¦orie des Sous-Ensembles Flous, Masson, Paris, 1973.

    Google Scholar 

  50. M.M. Gupta, R.K. Ragade, and R.R. Yager, Eds., Advances in Fuzzy Set Theory and Applications, North-Holland Publ. Co., Leyden, 1979.

    Google Scholar 

  51. D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York, 1980.

    Google Scholar 

  52. E. Sanchez and M.M. Gupta, Eds., Fuzzy Information, Knowledge Representation and Decision Analysis, Pergamon Press, London, 1983.

    Google Scholar 

  53. E. Prugovecki, Found. Phys.4,9, 1974.

    Article  Google Scholar 

  54. E. Pnigovecki, Found. Phys.5,557, 1975.

    Article  Google Scholar 

  55. E. Prugovecki, J. Phys. A9,1851, 1976.

    Article  Google Scholar 

  56. S.T. Ali and H.D. Doebner, J. Math. Phys.17,1105, 1976.

    Article  Google Scholar 

  57. S.T. Ali and E. Prugovecki, J.Math. Phys., 18, 219, 1977.

    Article  Google Scholar 

  58. P.G. Mezey, Three-dimensional Topological Aspects of Molecular Similarity, in “Concepts and Applications of Molecular Similarity”, Eds., G.M. Maggiora and M.A. Johnson, Wiley Interscience, New York, 1990.

    Google Scholar 

  59. P.G. Mezey, Molecular Surfaces, in “Reviews in Computational Chemistry”, Eds. K.B. Lipkowitz and D.B. Boyd, VCH Publ., New York, 1990, pp 265–294.

    Google Scholar 

  60. P.G. Mezey, J. Math. Chem.2,299 (1988).

    Article  CAS  Google Scholar 

  61. P.G. Mezey, Nonvisual Molecular Shape Analysis: Shape Changes in Electronic Excitations and Chemical Reactions, in “Computational Advances in Organic Chemistry”, Eds. C. Ögretir and LG. Csizmadia, Kluwer Academic Publ., Dordrecht, The Netherlands, 1990.

    Google Scholar 

  62. G.A. Arteca, P.G. Mezey, Configurational Dependence of Molecular Shape, in Reports in Molecular Theory, Eds. G. Náray-Szabó and H. Weinstein, CRC Press, to be published.

    Google Scholar 

  63. P.G. Mezey, Int. J. Quant. Chem. Quant. Biol. Symp.12,113 (1986).

    CAS  Google Scholar 

  64. P.G. Mezey, J. Comput. Chem., 8, 462 (1987).

    Article  CAS  Google Scholar 

  65. P.G. Mezey,J.Math. Chem.,2,325 (1988).

    Article  CAS  Google Scholar 

  66. F. Harary and P.G. Mezey, J. Math. Chem.2,377 (1988).

    Article  CAS  Google Scholar 

  67. G.A. Arteca and P.G. Mezey, Int. J. Quant. Chem.34,517 (1988).

    Article  CAS  Google Scholar 

  68. G.A. Arteca and P.G. Mezey, J. Phys. Chem.93,4746 (1989).

    Article  CAS  Google Scholar 

  69. G.A. Arteca and P.G. Mezey, J. Math. Chem.3,43 (1989).

    Article  CAS  Google Scholar 

  70. G.A. Arteca, G.A. Heal, and P.G. Mezey, Theor. Chim. Acta76,377 (1990).

    Article  CAS  Google Scholar 

  71. F. Harary and P.G. Mezey, Chiral and Achiral Square-Cell Configurations; The Degree of Chirality, in this volume.

    Google Scholar 

  72. P.G. Mezey, J. Math. Chem., 6, xxx (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mezey, P.G. (1991). A global approach to molecular chirality. In: Mezey, P.G. (eds) New Developments in Molecular Chirality. Understanding Chemical Reactivity, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3698-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3698-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5644-1

  • Online ISBN: 978-94-011-3698-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics