Skip to main content

Relationship Between Creep and Fracture of Ice

  • Chapter
Mechanics of Creep Brittle Materials 2

Abstract

After a brief introduction to the general brittle-ductile behaviour of polycrystalline materials we examine the flow and fracture properties of ice using recent experimental data. Results from uniaxial and triaxial compression tests, and from uniaxial tension tests, are presented that directly allow us to map out the range of various ice deformation mechanisms. In particular we examine the influence of microcracking on creep behaviour, the transition from flow to fracture, and the nature of uniaxial and triaxial brittle failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murreil, S.A.F., Brittle-to-ductile transitions in polycrystalline non-metallic materials. In Deformation Processes in Minerals, Ceramics and Rocks, eds D.J. Barber and P.G. Meredith, Unwin Hyman, London, 1990, ppl09–37.

    Google Scholar 

  2. Griffith, A.A., The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. Lond., 1920, A221, 163–98.

    Google Scholar 

  3. Murrell, S.A.F., The theory of the propagation of elliptical Griffith cracks under various conditions of plane strain or plane stress. Part I. Br. J. Appl. Phys., 1964, 15, 1195–210;

    Article  Google Scholar 

  4. Murrell, S.A.F., The theory of the propagation of elliptical Griffith cracks under various conditions of plane strain or plane stress. Part II and Part III. Br. J. Appl. Phys., 1964, 15, 1211–23

    Article  Google Scholar 

  5. Orowan, E., Fundamentals of brittle behaviour in metals. In Fatigue and Fracture of Metals, ed. W.M. Murray, Wiley, New York, 1952, pp. 139–167.

    Google Scholar 

  6. Ashby, M.F. and Hallam, S.D., The failure of brittle solids containing small cracks under compressive stress states. Acta Metall., 1986, 34, 497–510.

    Article  CAS  Google Scholar 

  7. Murrell, S.A.F., The effect of triaxial stress systems on the strength of rocks at atmospheric temperatures. Geophys. J. Roy. Astron. Soc., 1965, 10, 231–81.

    Google Scholar 

  8. Murrell, S.A.F. and Digby, P.J., The theory of brittle fracture initiation under triaxial stress conditions: I. Geoohvs. J. Roy. Astron. Soc., 1970, 19, 309–34

    Google Scholar 

  9. Murrell, S.A.F. and Digby, P.J., The theory of brittle fracture initiation under triaxial stress conditions: II. Geoohvs. J. Roy. Astron. Soc., 1970, 19, 499–512

    Google Scholar 

  10. Horii, H. and Nemat-Nasser, S., Brittle failure in compression: splitting, faulting and the brittle-ductile transition. Phil. Trans. Rov. Soc. Lond., 1986, A319, 337–74.

    Article  Google Scholar 

  11. Sammonds, P.R., Murrell, S.A.F. and Rist, M.A., Fracture of multi-year sea ice under triaxial stresses: apparatus description and preliminary results. J. Offshore Mech. Arctic Eng., 1989, 111(3), 258–263.

    Article  Google Scholar 

  12. Sammonds, P.R., Murrell, S.A.F., Rist, M.A. and Butler, D., The design of a high-pressure, low temperature triaxial deformation cell for ice. Cold Reg. Sci. Technol., 1991, 19(2), in press.

    Google Scholar 

  13. Rist, M.A., Sammonds, P.R. and Murrell, S.A.F., Strain rate control during deformation of ice: an assessment of the performance of a new servo-controlled triaxial testing system. Cold Reg. Sci. Technol., 1991, 19(2), in press.

    Google Scholar 

  14. Rist, M.A., Murrell, S.A.F. and Sammonds, P.R., Experimental results on the failure of polycrystalline ice under triaxial stress conditions. In Proc. IAHR Ice Symp., Sapporo, Japan, 1988, pp118–27.

    Google Scholar 

  15. Hallbauer, D.K., Wagner, H. and Cook, N.G.W., Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1973, 10, 713–726.

    Article  Google Scholar 

  16. Costin, L.S., Damage mechanics in the post-failure regime. Mech. Mat., 1985, 4, 149–60.

    Article  Google Scholar 

  17. Sinha, N.K. Crack enhanced creep in polycrystalline material: strain-rate sensitive strength and deformation of ice, J. Mater. Sci., 1988, 23, 4415–28.

    Article  Google Scholar 

  18. Jordaan, I.J. and McKenna, R.F., Processes of deformation and fracture of ice in compression. In. Proc. IUTAM/IAHR Synp. Ice/Structure Interactions, St Johns, Canada, 1989, in press.

    Google Scholar 

  19. Mellor, M. and Cole, D.M., Deformation and failure of ice under constant stress or constant strain-rate. Cold. Reg. Sci. Technol., 1982, 5, 201–19.

    Article  Google Scholar 

  20. Mellor, M. and Cole, D.M., Stress/strain/time relations for ice under uniaxial compression. Cold Reg. Sci. Technol., 1983, 6, 207–30.

    Article  Google Scholar 

  21. Barnes, P., Tabor, D. and Walker, J.C.F., The friction and creep of polycrystalline ice. Proc. Roy. Soc. Lond., 1971, A324, 127–55.

    Google Scholar 

  22. Budd, W.F. and Jacka, T.H., A review of ice rheology for ice sheet modelling. Cold Reg. Sci. Technol., 1989, 16, 107–144.

    Article  Google Scholar 

  23. Sinha, N.K., Rheology of columnar-grained ice. Exper. Mech., 1978, 18, 464–470.

    Article  Google Scholar 

  24. Weertman, J., Creep deformation of ice. Annu. Rev. Earth Planet. Sci., 1983, 11, 215–40.

    Article  CAS  Google Scholar 

  25. Duval, P., Ashby, M.F. and Andermann, I., Rate-controlling processes in the creep of polycrystalline ice. J. Phys. Chem., 1983, 87, 4066–74.

    Article  CAS  Google Scholar 

  26. Walker, J.C.F., The mechanical properties of ice Ih. PhD Thesis, University of Cambridge, 1970.

    Google Scholar 

  27. Cole, D.M., Strain rate and grain size effects in ice. J. Glaciol., 1987, 33, 274–280.

    Google Scholar 

  28. Jones, S.J., The confined compressive strength of polycrystalline ice. J. Glaciol., 1982, 28, 171–7.

    Google Scholar 

  29. Durham, W.B., Heard, H.C. and Kirby, S.H., Experimental deformation of polycrystalline H2O ice at high pressure and low temperature: preliminary results. J. GeoPhys. Res., 1983, 88, B377–B392.

    Article  Google Scholar 

  30. Kirby, S.H., Durham, W.B., Beeman, M.L., Heard, H.C. and Daley, M.A., Inelastic properties of ice Ih at low temperatures and high pressures. J. de Physique, 1987, 48, Colloque C1 (3), 227–32.

    Google Scholar 

  31. Mellor, M. and Testa, R., Effect of temperature on the creep of ice. J. Glaciol., 1969, 8, 131–45.

    CAS  Google Scholar 

  32. Jones, S.J. and Brunei, J.G., Deformation of ice single crystals close to the melting point. J. Glaciol., 1978, 21, 445–56.

    CAS  Google Scholar 

  33. Schulson, E.M., The fracture of ice Ih. J. de Physique, 1987, 48, Colloque C1 (3), 207–218.

    Google Scholar 

  34. Hallam, S.D., The role of fracture in limiting ice forces. In Proc. IAHR Symposium on Ice, 1986, Iowa, USA, Vol. 2, pp 387–319.

    Google Scholar 

  35. Schulson, E.M. The Brittle compressive fracture of ice. Acta. Metall., 1990, 38, 1963–76.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Rist, M.A., Murrell, S.A.F. (1991). Relationship Between Creep and Fracture of Ice. In: Cocks, A.C.F., Ponter, A.R.S. (eds) Mechanics of Creep Brittle Materials 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3688-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3688-4_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-701-7

  • Online ISBN: 978-94-011-3688-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics