Skip to main content

Microscopic Models and Macroscopic Constitutive Laws for High Temperature Creep and Creep Fracture of Metallic and Ceramic Materials

  • Chapter

Abstract

The model-based θ Projection Concept offers materials constitutive relationships which allow data obtained from short-term high-precision constant-stress creep curves to be extrapolated to predict long-term creep properties with impressive accuracy. The practical aspects of this approach to creep data prediction are discussed for creep brittle and creep ductile materials, with special attention focused on microstructurally-unstable alloys. The factors affecting trends in creep ductility for a variety of materials are then considered in relation to long-term creep failure prediction using the θ methodology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilshire, B., Proc. 4th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, ed. B. Wilshire and R.W. Evans, The Institute of Metals, London, 1990, 1.

    Google Scholar 

  2. Harper, J.G. and Dorn, J.E., Acta Metall., 1957, 5, 654.

    Article  CAS  Google Scholar 

  3. Barrett, C.R., Muehleisen, E.C. and Nix, W.D., Mater. Sci. Eng., 1972, 10, 33.

    Article  CAS  Google Scholar 

  4. Mohamed, F.A., Murty, K.L. and Morris, J.W., Met. Trans., 1973, 4, 935.

    Article  CAS  Google Scholar 

  5. Malakondaiah, G. and Rama Rao, P., Scripta Metall., 1979, 13, 1187.

    Article  CAS  Google Scholar 

  6. Dixon-Stubbs, P.J. and Wilshire, B., Philos. Mag., 1982, 45A, 519.

    Google Scholar 

  7. Evans, R.W. and Wilshire, B., Creep of Metals and Alloys, The Institute of Metals, London, 1985.

    Google Scholar 

  8. Evans, R.W., Scharning, P.J. and Wilshire, B., Creep Behaviour of Crvstalline Solids, ed. B. Wilshire and R.W. Evans, Pineridge Press, Swansea, 1985, 201.

    Google Scholar 

  9. Evans, R.W., Parker, J.D. and Wilshire, B., Recent Advances in Creep and Fracture of Engineering Materials and Structures, ed. B. Wilshire and D.R.J. Owen, Pineridge Press, Swansea, 1982, 135.

    Google Scholar 

  10. Williams, K.R. and Wilshire, B., Mater. Sci. Eng., 1981, 47, 151.

    Article  CAS  Google Scholar 

  11. Browne, R.J., Cane, B.J., Parker, J.D. and Walters, D.J., Int. Conf. on Creep and Fracture of Engineering Materials and Structures, ed. B. Wilshire and D.R.J. Owen, Pineridge Press, Swansea, 1981, 645.

    Google Scholar 

  12. Wilshire, B. and Evans, R.W., Life Assessment and Life Extension of Power Plant Components, ed. T.V. Narayanam, ASME, New York, 1989, 217.

    Google Scholar 

  13. Wilshire, B., Applied Stress Analysis, ed. T.H. Hyde and E. Ollerton, Elsevier Applied Science, London, 1990, 180.

    Google Scholar 

  14. Huet, J.J. and Le Compte, C., Ferritic Steels for High Temperature Applications, A.S.M. New York, 1983, 210.

    Google Scholar 

  15. Huet, J.J., Coheur, L., De Bremaeker, A., De Wilde, L., Gedopt, J.B., Hendrix, W. and Vandermeulen, W., Nucl. Tech., 1985, 70, 215.

    CAS  Google Scholar 

  16. Goodall, I.W., Leckie, F.A., Ponter, A.R.S. and Townley, C.H.A., J. Eng. Mat. Tech., 1979, 101, 137.

    Article  Google Scholar 

  17. Evans, R.W., Murakami, T. and Wilshire, B., Brit. Ceram., 1988, 87, 54.

    CAS  Google Scholar 

  18. Wilshire, B., Science of Ceramics 14, ed. D. Taylor, The Institute of Ceramics, Stoke-on-Trent, 1988, 61.

    Google Scholar 

  19. Johnson, R.F., May, M.J., Trueman, R.J. and Mickleraith, J., Proc. Conf. on High Temperature Properties of Steels, ISI, London, 1967, 229.

    Google Scholar 

  20. Evans, R.W., Fadlalla, A.A., Wilshire, B., Butt, R.I. and Wilson, R.N., Proc. 4th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, ed. B. Wilshire and R.W. Evans, The Institute of Metals, London, 1990, 1009.

    Google Scholar 

  21. Glen, J., J. Iron Steel Inst., 1955, 179, 320.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Wilshire, B. (1991). Microscopic Models and Macroscopic Constitutive Laws for High Temperature Creep and Creep Fracture of Metallic and Ceramic Materials. In: Cocks, A.C.F., Ponter, A.R.S. (eds) Mechanics of Creep Brittle Materials 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3688-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3688-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-701-7

  • Online ISBN: 978-94-011-3688-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics