Skip to main content

Summary

Many different approaches have been taken to combat fouling and concentration polarization. A great many of these deal with modifying the properties of the membrane surface or the hydrodynamics above it. This paper reviews the effects that hydrodynamic factors have on the performance of membrane filtration systems. Particular emphasis has been given to recent developments in mixing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel, K., Jeffree, MA., Bellhouse, BJ., Bellhouse, E.L., Haworth, W.S., (1981), “A Practical Secondary-Flow Hemodialyzer”, Trans. Am. Soc. Artif. Intern. Organs, 27, 639–643

    CAS  Google Scholar 

  • Aimar, P., Lafaille, J.P., and Sanchez, V., (1985), “Influence of adsorption on protein ultrafiltration using organic/inorganic membranes”, in Fouling and Cleaning in Food Processing, Second International Conference on Fouling and Cleaning in Food Processing, ed. D. Lund, E. Plett, C. Sandu, Wiiconsin, 466–475

    Google Scholar 

  • Aimar, P., and Sanchez, V., (1985) “Membrane fouling and limiting phenomena in ultrafiltration”, Fouling and Cleaning in Food Processing, Second International Conference on Fouling and Cleaning in Food Processing, ed. D. Lund, E. Plett, C. Sandu, 486–495

    Google Scholar 

  • Aimar, P., Clifton, M J., and Howell, J.A., “Concentration polarization build-up in hollow fibres: a method of measurement and its modelling in ultrafiltration”, J. Memb. Sci., (in press)

    Google Scholar 

  • Aimar, P., Howell, JA., and Turner, N.M., (1989), “Effects of the boundary layer development on the flux limitation in ultrafiltration”, Chem. Eng. Res. Des., 67, 255–261

    CAS  Google Scholar 

  • Aref, H., (1984), “Stirring by Chaotic Advection”, J. Fluid Mech., 143, 1–21

    Article  Google Scholar 

  • Bauser, H., Chmiel, H., Stroh, N., Walitza, E., (1982), “Interfacial Effects with Microfiltration Membranes”, J. Memb. Sci., 11, 321–332

    Article  CAS  Google Scholar 

  • Bauser, EL, Chmiel, H., Stroh, N., Walitza, E., (1986), “Control of Concentration Polarization and Fouling in Medical, Food and Biotechnical Applications”, J. Memb. Sci., 27, 195–202

    Article  CAS  Google Scholar 

  • Bellort, G. and Marx, B., (1979), “Artificial Particulate Fouling of Hyperfiltration Membranes”, Desal., 28, 13–30

    Article  Google Scholar 

  • Belfort, G., (1988), “Membrane Modules: Comparison of different Configurations Using Fluid Mechanics”, J. Memb. Sci., 35, 245–270

    Article  CAS  Google Scholar 

  • Bell, G., (1985), “Membrane Separation Processes”, presented at Downstream Separation Processes in Biochemical Engineering, IChemE, Glasgow, Nov 21

    Google Scholar 

  • Bellhouse, BJ., Bellhouse, F.H., Curl, CM., MacMillan, TX, Gunning, AJ., Spratt, E.H., MacMurray, S.B., Nelems, J.M., (1973), “A High Efficiency Membrane Oxygenator and Pulsatile Pumping System, and its Application to Animal Trials”, Trans. Am. Soc Artif. Intern. Organs, 19, 72–79

    CAS  Google Scholar 

  • Benzinger, W.D., Toal, M.G., Sprout, O.S., Hinde, GM., (1980), “Development of Non-Fouling Piezoelectric Ultrafiltration Membranes”, Final Report to the Office of Water Research and Technology, Aug, 35pg

    Google Scholar 

  • Blatt, W.F., Dravid, A., Michaels, A.S., Nelsen, L., (1970), “Solute Polarization and Cake Formation in Membrana Ultrafiltration: Causes, Consequences and Control Techniques”, in Membrane Science and Technology, ed J.E. Flinn, Plenum Press, New York, 47–97

    Google Scholar 

  • Bowen, W.R. and Sabuni, H., (1987), “Electrically Enhanced Membrane Filtration”, in Proceedings from the Workshop on Concentration Polarization and Membrane Fouling, Twente University, Enschede, May

    Google Scholar 

  • Breslau, B.R., Agranat, EA., Testa, A J., Messinger, S., Cross, RA., (1975), “Hollow Fibre Ultrafiltration”, Chem. Eng. Progress, 71(12), 74–80

    CAS  Google Scholar 

  • Charm, S.E. and Lai, C J., (1971), “Comparison of Ultrafiltration Systems for Concentration of Biologicals”, Biotech, and Bioeng., 13,185–202

    Article  CAS  Google Scholar 

  • Clifton, M J., Abidine, N., Aptel, P., and Sanchez, V., (1984), “Growth of the polarisation layer in ultrafiltration with hollow fibre membranes”, J. Memb. Sci. 21, 233–246

    Article  CAS  Google Scholar 

  • Colman, DA. and Mitchell, W.S., (1990), “Enhanced Mass Transfer for Membrane Processes”, I. Chem. E. Symp. Ser., 118. 87–103

    Google Scholar 

  • Copas, A.L. and Middleman, S., (1974), “Use of Convection Promotion in the Ultrafiltration of a Gel-Forming Solute”, Ind. Eng. Chem. Process Des. Develop., 13(2), 143–145

    Article  CAS  Google Scholar 

  • Dorrington, K.L., Ralph, M.E., Bellhouse, BJ., Gardez, J.P., Sykes, M.K., (1985), “Oxygen and C02 Transfer of a Polypropylene Dimpled Membrane Lung with Variable Secondary Flows”, J. Biomed. Eng., 7, 89–99

    Article  CAS  Google Scholar 

  • Edwards, M.F. and Wilkinson, W.L., (1971), “Review of Potential Applications of Pulsating Flow in Pipes”, Trans. Instn. Chem. Engrs., 49, 85–93

    Google Scholar 

  • Fairbanks, H.V., (1973), “Use of Ultrasound to Increase Filtration Rate”, Ultrasonics Int. Conf. Proc., Imperial College, London, 11–15

    Google Scholar 

  • Fane, A.G., Fell, CJ.D, Kim, K J., (1985), “The Effect of Surfactant Pretreatment on the Ultrafiltration of Proteins”, Desal., 53, 37–55

    Article  CAS  Google Scholar 

  • Finnigan, S.M. and Howell, JA., (1989A), “The Effect of Pulsatile Flow on Ultrafiltration Fluxes in a Baffled Tubular Membrane System”, Chem. Eng. Res. Des., 67(3), 278–282

    CAS  Google Scholar 

  • Finnigan, S.M. and Howell, JA., (1989B), “The Effect of Pulsed Flow on Ultrafiltration Fluxes in a Baffled Tubular Membrane System”, in The Membrane Alternative-Energy Implications for Industry Conference, University of Bath, March 29–30, Elsevier, in press.

    Google Scholar 

  • Fumigan, S.M. and Howell, JA, (1989C), “The Effect of Pulsed Flow on Ultrafiltration Fluxes in a Baffled Tubular Membrane System”, in Proceedings 3nd Int Conf. on Foulng and Cleaning in the Food Industry, Prien, Germany, June, in press.

    Google Scholar 

  • Fumigan, SM. and Howell, JA., (1989D), “The Effect of Pulsed Flow on Ultrafiltration Fluxes in a Baffled Tubular Membrane System”, presented at 6 th Int Symp. on Synthetic membranes in Science and Industry, Tubingen, Sept 4–8, to be published in J. Memb. Sci.

    Google Scholar 

  • Fumigan S.M., (1990), “Pulsed Flow Ultrafiltration in Baffled Tubular Membrane Systems, PhD dissertation, University of Bath

    Google Scholar 

  • Goel, V. and McCutchan, J.W., (1976), “Colorado River Desalting by Reverse Osmosis”, in Proceedings. 5 th Int. Symp. Fresh Water from the Sea, Alghero, May 16–20, 4, 143–156

    Google Scholar 

  • Gregor, H.P. and Gregor, CD., (1978), “Synthetic Membrane Technology”, Scientific American, 239, 88–101

    Article  Google Scholar 

  • Hallström, B. and López-Leiva, M., (1978), “Description of a Rotating Ultrafiltration Module”, Desalination, 24, 273–9

    Article  Google Scholar 

  • Hanemaaijer, J.H., (1987), “Fouling of Ultrafiltration Membranes. The Role of Protein Adsorption and Salt Precipitation”, in Proceedings from the workshop on Concentration Polarization and Membrane Fouling, Twente University, Enschede, May

    Google Scholar 

  • Harper, WJ., (1980), “Factors Affecting the Application of Ultrafiltration Membranes in the Dairy Industry”, in Ultrafiltration Membranes and Applications, ed. A.R. Cooper, Plenum Press, New York, 321–342

    Google Scholar 

  • Hermann, C.C., (1982), “High Frequency Excitation and Vibration Studies on Hyperfiltration Membranes”, Desal., 42, 329–338

    Article  Google Scholar 

  • Hiddink, J., Kloosterboer, D., Bruin, S., (1980), “Evaluation of Static Mixers as Convection Promoters in the Ultrafiltration of Dairy Liquids”, Desal., 35,149–167

    Article  Google Scholar 

  • Howell, JA. and Velicangil, O., (1977), “Protease Coupled Membranes for Ultrafiltration”, Biotech, and Bioeng., 19,1891–1894

    Article  Google Scholar 

  • Howell, JA. and Velicangil, O., (1981), “Self-Cleaning Membranes for Ultrafiltration”, Biotech, and Bioeng., 23, 843–854

    Article  Google Scholar 

  • Howell, JA. and Velicangil, O., (1982), “Theoretical Considerations of Membrane Fouling and its Treatment with Immobilized enzymes for Protein Ultrafiltration”, J. Appl. Poly. Sci., 27, 21–32

    Article  CAS  Google Scholar 

  • Howes, T., (1988),On the Dispersion of Unsteady Flow in Baffled Tubes, PhD thesis, Department of Chemical Engineering, Cambridge University

    Google Scholar 

  • Kennedy, T J., Merson, R.L., McCoy, B J., (1974), “Improved Permeation Flux by Pulsed Reverse Osmosis”, Chem. Eng. Sci., 29,1927–1931

    Article  CAS  Google Scholar 

  • Kroner, K.H. and Nissinen, (1988), “Dynamic Filtration of Microbial Suspensions Using an Axially Rotating Filter”, J. Memb. Sci., 36, 85–100

    Article  CAS  Google Scholar 

  • Le, M.S. and Howell, JA., (1983), “The Fouling of Ultrafiltration Membranes and its Treatment”, in Progress in Food Engineering, Foster Publ, Switzerland, 321–326

    Google Scholar 

  • Le, M.S. and Howell, JA., (1985), “Ultrafiltration”, in Comprehensive Biotechnology, ed. M. Moo-Young, Ch. 25,383–409

    Google Scholar 

  • Leung, W.F, and Probstein, R.F., (1979) Ind. Eng. Chem.(Fundam.) 18(3) 274–278

    CAS  Google Scholar 

  • Lowe, E. and Durkee, EX., (1971), “Dynamic Turbulence Promotion in Reverse Osmosis Processing of Liquid Foods”, J. Food Sci, 36, 31–32

    Article  Google Scholar 

  • Lozier, J.C. and Sierka, RA, (1985), “Using Ozone and Ultrasound to Reduce Reverse Osmosis Membrane Fouling”, J. AWWA, Aug, 60–65

    Google Scholar 

  • Michaels, A.S., (1968), “New Separation Techniques for the CPI”, Chem. Eng. Prog., 64 31–43

    CAS  Google Scholar 

  • Michaels, A.S., Robertson, CR., Reihanian, H., (1983), “Recent Developments in Ultrafiltration: A Solution to the Polarization/Fouling Problem”, IMTEC Conference Proceedings, Australia, Nov 8–10, 59–63

    Google Scholar 

  • Milisic, V. and Bersillon, J.L., (1986), “Anti-fouling Techniques in Cross Flow Microfiltration”, 4 th World Filtration Congress, Ostend, April, 11.19–11.23

    Google Scholar 

  • Murkes, J. and Carlsson, C.G., (1988), Crossflow Filtration, John Wiley & Sons Ltd, New York

    Google Scholar 

  • Nakao, S., Nomura, T., Kimura, S., (1979), “Characteristics of Macromolecular Gel Layer Formed on Ultrafiltration Tubular Membrane”, AIChE J., 25(4). 615–622

    Article  CAS  Google Scholar 

  • Peri, C. and Dunkley, W.L., (1971), “Reverse Osmosis of Cottage Cheese Whey. 2. Influence of Flow Conditions”, J. Food Sci., 36, 395–396

    Article  CAS  Google Scholar 

  • Poyen, S., Quemeneur, F., Bariou, B., (1987), “Improvement of the Flux of Permeate in Ultrafiltration by Turbulence Promoters”, Int. Chem. Eng., 27(3). 441–447

    Google Scholar 

  • Pritchard, M., Scott, J. A., and Howell, JA., (1990) D. L. Pyle (ed) “The Concentration of Yeast Suspensions by Crossflow Filtration”, Separations for Biotechnology 2 pt 1, 65–73

    Google Scholar 

  • Racz, I.G., Wassink, J.G., Klaasen, R., (1986), “Mass Transfer, Fluid Flow and Membrane Properties in Flat and Corrugated Plate Hyperfiltration Modules”, Desal., 60, 213–222

    Article  CAS  Google Scholar 

  • Randerson, D.H., (1983), “Principles Governing Flux Rate in Membranes for Blood-Plasma Separation”, IMTEC Conference Proceedings, Australia, Nov 8–10, 44–46

    Google Scholar 

  • Rebsamen, E., (1981), “Fundamentals and Engineering Concept of a Pressure Filter for Dynamic Filtration”, Proceedings Symposium Societe Beige de Filtration, Louvain-la-Neuve, 247–270

    Google Scholar 

  • Reed, I.M. and Dudley, L.Y., (1987), Adsorption of Proteins to Membranes, BIOSEP report, Chemical Engineering Division, AERE Harwell

    Google Scholar 

  • Sawides, C.N. and Gerrard, J.H., (1984), “Numerical Analysis of the Flow through a Corrugated Tube with Application to Arterial Prostheses”, J. Fluid. Mech., 138, 129–160

    Article  Google Scholar 

  • Semmelink, A., (1973), “Ultrasonically Enhanced Liquid Filtering”, in Ultrasonics Int. Conf. Proc., Imperial College, London, 7–10

    Google Scholar 

  • Sobey, I J., (1980), “On Flow Through Furrowed Channels. Part 1. Calculated Flow Patterns”, J. Fluid. Mech., 96(1). 1–26

    Article  Google Scholar 

  • Speaker, L.M., (1985), “Antifouling technology for Membranes and Non-permeable Surfaces”, in Fouling and Cleaning in Food Processing, Second International Conference on Fouling and Cleaning in Food Processing, ed. D. Lund, E. Plett, C. Sandu, Wisconsin, 454–465

    Google Scholar 

  • Stephanoff, K.D., Sobey, IJ., Bellhouse, BJ., (1980), “On Flow Through Furrowed Channels. Part 2. Observed Flow Patterns”, J. Fluid Mech., 96(1). 27–32

    Article  Google Scholar 

  • Suki, A., Fane, A.G., Fell C J.D., (1986), “Modelling Fouling Mechanisms in Protein Ultrafiltration”, J. Memb. Sci., 27,181–193

    Article  CAS  Google Scholar 

  • Thomas, D.G. and Watson, J.S., (1968) “Reduction of Concentration Polarization of Dynamically Formed Hyperfiltration Membranes by Detached Turbulence Promoters”, Ind. Eng. Chem. Process Des. Develop., 7(3). 397–401

    Article  CAS  Google Scholar 

  • Van der Waal, MJ., van der Velden, P.M., Koning, J., Smolders, CA., van Swaay, W.J.M., (1977), “Use of Fluidized Beds as Turbulence Promoters in Tubular Membrane Systems”, Desal., 22, 465–483

    Article  Google Scholar 

  • Van Der Waal, M J. and Racz, LG., (1989), “Mass Transfer in Corrugated-Plate Membrane Modules. 1. Hyperfiltration Experiments”, J. Memb. Sci., 40, 243–260

    Article  Google Scholar 

  • Wakeman, R., (1986), “Electrofiltration, Microfiltration and Electrophoressis” June 65–70

    Google Scholar 

  • Wang, S.S., Davidson, B., Gillespie, C, Harris, L.R., Lent, D.S., (1980), “Dynamics of Enhanced Protein Ultrafiltration Using an Immobilized Protease”, J. Food. Sei., 45, 700–702

    Article  CAS  Google Scholar 

  • Winfield, B A., (1986), “Waste Treatment with Reverse Osmosis Membranes”, in Membrane Separations in Biotechnology, ed. W.C. McGregor, Marcel Dekker Inc, USA, Ch. 13, 355–373

    Google Scholar 

  • Wyatt, J.M., Knowles, CJ., Bellhouse, B J., (1987), “A Novel Membrane Module for Use in Biotechnology that has High Transmembrane Flux Rates and Low Fouling”, in Proceedings of International Conference on Bioreactors and Biotransformations, ed. G.W. Moody and PJJ. Baker, Gleneagles, Scotland, 166–172

    Google Scholar 

  • Zahka, J. and Leahy, TJ., (1985), “Practical Aspects of Tangential Flow Filtration in Cell Separations”, Advances in Chemistry Series, Amer. Chem. Soc Symp. Ser., 271, 51–69

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Elsevier Science Publishers Ltd, England

About this chapter

Cite this chapter

Howell, J.A., Finnigan, S.M. (1991). Hydrodynamics and Membrane Filtration. In: Turner, M.K. (eds) Effective Industrial Membrane Processes: Benefits and Opportunities. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3682-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3682-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-723-9

  • Online ISBN: 978-94-011-3682-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics